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ABSTRACT

Approaches for incorporating sound source directivity into wave-
based room acoustic simulations using a spherical harmonic rep-
resentation have been presented recently. Normally, the directiv-
ity is measured or prescribed on a spherical surface centered at the
nominal source position. In wave-based simulations, this directivity
can be represented through a locally-defined driving term acting at
the source location. In practice, the directivity of real-world sound
sources like musical instruments or industrial machinery can only be
measured approximately in terms of spatial resolution and accuracy.
We show that the measurement data can be augmented such that the
impairments due to the limitations of the measurement accuracy are
mitigated. We revisit the previously proposed approach of only using
the angle-dependent magnitude of the measured directivity together
with a spherical-wave propagation model and demonstrate its poten-
tial by means of numerical simulations based on two case studies.

Index Terms— Radiation, directivity, spherical harmonics,
wave-based room simulation

1. INTRODUCTION

The measurement and modelling of sound source directivity has seen
increased interest in recent years. The main application areas are
the analysis of the directivity of, for example, musical instruments
in order to understand the impact on the listening experience [1],
how the directivity interacts with room acoustics [2], and how noise
from machinery propagates in a given environment [3], or virtual
reality [4]. Simple models for directivity include [5].

Spherical harmonics (SH) have been shown to be a powerful
representation of sound source directivity [6, 7], going back to early
work by Weinreich [8]. We will focus on wave-based room acousti-
cal simulations such as [9] as an application scenario in the present
paper because it is this case that places the most stringent require-
ments on the modelling of the sound source directivity as the entire
range of the directivity from the nominal source position to very far
distances needs to be modelled.

The incorporation of source directivity into geometrical acous-
tics has seen some investigation. Spatial resolution of source di-
rectivity was studied in [2]; a significant impact of the maximum
SH order of the directivity on room acoustical metrics was found
with saturation occurring at an SH order of around 10. It was found
in [10] that directivities of order higher than 4 were not perceptually
significant in a binaural auralization of an image-source-based room
simulation.

A major challenge is the measurement of directivities of sources
that are not electroacoustical transducers. This is mainly because
it is not possible with most sources to drive them in a reproducible
manner with a known input signal as in the case of, e.g., musical in-
struments or machinery. Musical instrument directivities presented
in [11] were measured using a spherical array of 32 microphones
surrounding a musician playing a scale at different dynamic lev-
els. Stable partial oscillations were identified and the magnitude
and phase at each microphone position was deduced manually. Al-
ternative methods for determining the data were presented for the
same data set in [12]. Either way, such measurements are too sparse
with respect to frequency to, for example, perform an inverse Fourier
transform to obtain an impulse response representation. The phase
of such a directivity can change strongly with the playing style and
dynamics [6] so it should also be assumed that the phase data are un-
reliable. Similar if not stronger limitations apply to the measurement
of the directivity of machinery and the like.

Conceptually, the directivity represents a whole set of informa-
tion, including the location of a radiating surface, the time-frequency
information as well as the propagation of the radiated sound field.
The limitations of the measurement procedures do not allow all this
information to be deduced from the data. Here, we will extract only
the magnitude information with respect to both angle and frequency
from the measurement data and impose all remaining information
manually. We propose to impose source position and curvature of the
wave front by means of a spherical wave model. This source model
was already employed in the modeling of the directivity of moving
sources in [13] and with the boundary element method in [4], but its
properties were not investigated further. We demonstrate the useful-
ness of this choice in the present paper.

Source directivity and a far-field approximation are outlined in
Sec. 2. FDTD methods are briefly introduced in Sec. 3. Numerical
results, illustrating the incorporation of source directivity data into
an FDTD simulation are shown in Sec. 4.

2. SOURCE DIRECTIVITY AND AN APPROXIMATION

The term directivity with regard to acoustic sources has been defined
in various ways in the literature [14, 15, 16], [17, p. 204]. Here,
we define directivity as the spatio-temporal transfer function (STTF)
of a sound source under free-field conditions, evaluated at arbitrary
spatial locations. This is the most general definition, from which the
others above can be derived. We will assume that the directivity is
evaluated on a spherical surface centered around the source.



A source directivity W (r,γ, ω) is dependent on angular fre-
quency ω, in rad./sec, a radial distance r in m from the nominal
source center, and an angle 3-vector γ defined interns of azimuth
angle α and colatitude β. It is defined as

W (r,γ, ω) =

∞∑
l=0

l∑
m=−l

W̆l,m(ω)h
(1)
l

(ωr
c

)
︸ ︷︷ ︸

=W̊l,m(r,ω)

Yl,m(γ) , (1)

and represents the radiated acoustic field exterior to a sphere that
is just large enough to completely enclose the sound source [17,
p. 206]. h(1)

l (·) is the lth order spherical Hankel function of first
kind, and Yl,m(γ), defined for integer l ≥ 0 and −l ≤ m ≤ l,
are the SH basis functions, which we are assuming to be purely
real. W̆l,m(ω) are coefficients that contain all information about
the source directivity.

The coefficients W̆l,m(ω) follow from an approximation to

W̆l,m(ω) =
1

h
(1)
l

(
ωR
c

) ∫∫
S2

W (R,γ, ω)Yl,m(γ)dΩ , (2)

whereW (R, γ, ω) is a directivity known on a spherical surface with
radius R that encloses the source, and S2 represents the unit sphere.
Alternatively, a least-squares fit of the coefficients to the spatially
discrete measurement data points can be performed based on (1) [18,
19, 9]. In either case, only the coefficients up to a given order l = L
that depends on the number of measurement points can be obtained.

Evaluating the directivity in the limit of r → ∞ (Williams,
p. 204), leads to the large-argument approximation of the spherical
Hankel function given by (12), and (1) simplifies to [17, p. 204]

W∞(r,γ, ω) =
ei ωr

c

r

c

iω

∞∑
l=0

l∑
m=−l

(−i)lW̆l,m(ω)Yl,m(γ) . (3)

W∞(r,γ, ω) is referred to as the far-field signature of the directiv-
ity [20, p. 81]. Eq. (3) tells us that at sufficient distance, a source of
finite spatial extent radiates spherical wave fronts (ei ωr

c /r), the com-
plex amplitude of which depends on the angle and is represented by
the coefficients W̆l,m(ω). In other words, the angular dependence
of the directivity is imposed onto a spherical wave. How far this suf-
ficient distance has to be depends on the spatial extent of the source
and its distance from the coordinate origin (which coincides with
the nominal location of the source). The observation distance has
to be much larger than the largest dimension of the source. Classi-
cal polar diagrams display the magnitude of the far-field signature
W∞(r,γ, ω).

The origin of the wave fronts in (3) is sometimes called the
acoustical center of the source [21]. It was highlighted in [6, 22, 23]
that in directivity measurements, the source should be located in the
center of the enclosing spherical array in order to concentrate en-
ergy in the lower SH orders. Source centering has been proposed
ibidem, which consists in identifying the acoustic centers of the el-
ementary sound sources that the source comprises (one is assumed
for each frequency bin) and placing the coordinate origin into the
acoustic centers. This procedure tends to be successful only at lower
frequencies (< 1 kHz) where no spatial aliasing is apparent [11].

Because of the limitations of directivity measurement data high-
lighted in Sec. 1, we follow the proposition from [13] to impose the
nominal source location as well as a model of the propagation (par-
ticularly the radial dependency) on the measured data using (3), an
approach which is justifiable at large distances. If the source is of

small spatial extent and located at the origin of the coordinate sys-
tem, the discrepancy will be very small. This assumption holds for
most sound sources for which detailed directivity data is available,
such as [11] (which also includes virtual source centering as men-
tioned above). We will demonstrate the usefulness of this choice via
numerical simulations in Sec. 4.

As the phase data cannot be measured reliably and are often too
sparse to perform interpolation, we here extract only the magnitude
of the directivity from the measurement data and impose it onto a
spherical wave that originates from the coordinate origin [4]. We use
the symbol W ′(r,γ, ω) in the remainder of this paper to represent
this new modeled directivity. More precisely, W ′(R,γ, ω) over the
spherical measurement surface of radius R is given by

W ′(R,γ, ω) =
ei ωR

c

R
R · |W (R,γ, ω)| , (4)

whereby multiplication by the radius R is employed for normalisa-
tion. Expressing the angular part in (4) based on SH leads to

W ′(R,γ, ω) = ei ωR
c

∞∑
l=0

l∑
m=−l

W̆ ′l,m(ω)Yl,m(γ) . (5)

To obtain the SH coefficients W̊ ′l,m(R,ω) of the complete model of
W ′(r,γ, ω) as per (1), we constrain the magnitude of W ′(r,γ, ω)
to be equal to the magnitude of the measured directivity W (r,γ, ω)
on the measurement surface as

|W (R,γ, ω)| =
∞∑
l=0

l∑
m=−l

W̆ ′l,m(ω)Yl,m(γ) . (6)

Eq. (6) may be solved for W̆ ′l,m(ω) either using (2) (without dividing
by h(1)

l (·)) or performing a least-squares fit [4]. As before, this can
be achieved only up to a certain order l = L in practice.

The coefficients W̊ ′l,m(R,ω) of the complete SH based model
of W ′(r,γ, ω) are given by

W̊ ′l,m(R,ω) = ei ωR
c W̆ ′l,m(ω) , (7)

and, finally, using [17, Eq. (6.94)]

W ′(r,γ, ω) =

∞∑
l=0

l∑
m=−l

W̊ ′l,m(R,ω)
h

(1)
l

(
ωr
c

)
h

(1)
l

(
ωR
c

)Yl,m(γ) . (8)

It may be advantageous to fit a given desired phase to the mag-
nitude directivity |W (R, γ, ω)| obtained via (6) such as minimum
phase or linear phase [24] to design the time-domain structure of the
signals. Also, augmentation of the data through recovery of the al-
gebraic sign of lobes in the directivity as proposed in [25] may be
applied.

3. INTEGRATION INTO WAVE SIMULATIONS

Volumetric wave-based acoustic simulation dates back to the 1990s
[26, 27, 28], and can be viewed as a more accurate alternative to
geometric acoustics simulation, in that all effects of diffraction
are modelled. Though computationally intensive, simulations for
reasonable-sized spaces at audio rates are possible nowadays [29].
The finite difference time domain method (FDTD) is one particular
type of wave-based method that will be employed here.



In contrast with most other applications, the incorporation of
source directivity into wave-based room acoustical simulations like
FDTD as proposed, for example, in [9] requires extrapolation of the
directivity to a nominal position for a driving term, which coincides
with the origin of the coordinate system in (1). Strictly speaking,
(1) is a so-called exterior representation that is only valid outside
of a sphere that contains the sound source in its entire extent [17,
p. 206]. By extrapolating the directivity to the center of the coordi-
nate system, we actually penetrate the sound source whose directiv-
ity we are considering. The consequence is that the directivity will
not be meaningful when evaluated at such interior positions. How-
ever, (1) is a physically viable solution to the wave equation even in
the interior domain so that we are not facing fundamental physical
limitations here.

The numerical conditioning of the involved quantities deserves
attention particularly in view of the fact that source directivities have
a singularity at the source position (the directivity of a point source
(a 0th-order directivity) is ∝ 1/r, and that of a dipole (a 1st-order
directivity) is ∝ ω2/r2 [17, p. 198, 200]; cf. also [30, p. 40]). Also,
the far-field signature (3) comprises multiple time integrations (rep-
resented by the factor 1/iω), which diverge at low frequencies.

We here investigate the numerical conditioning of the signals
through which the sound source directivity is injected into the simu-
lation framework. It is shown in [9] that a directivity that is available
as a set of SH coefficients W̊l,m(R,ω) (cf. (1)) over a sphere of finite
radius R centered around the source can be directly substituted into
an FDTD simulation, with appropriately defined SH driving terms.
The input signals âl,m(ω) to the FDTD simulation can be computed
via [9]

âl,m(ω) =
4πc (−1)l il

(iω)l+1h
(1)
l

(
ωR
c

) W̊l,m(R,ω) . (9)

Each such signal âl,m(ω) selects the contribution of a single SH
component, of indeces l,m to the directivity. The signals âl,m(ω)
from (9) do indeed exhibit a frequency dependence, the implica-
tions of which are not immediately obvious from the mathematical
expression above. We refer the reader to Appendix A where we
demonstrate that the computation of the signals âl,m(ω) is numeri-
cally well-behaved in the low frequency limit.

4. RESULTS

4.1. Case Study 1: The Displaced Monopole

It is very likely, when measuring the directivity of real-world
sources, that some parts of the radiating structure cannot be placed
at the center of the spherical microphone array. We illustrate in
this section the consequences of this circumstance and how our
presented method can mitigate against this difficulty. Note that the
virtual source centering that has been proposed in [6, 22, 23] can-
not be considered an ultimate cure to this due to the fact that such
methods are only effective if there is only one source location per
frequency bin, which will typically not be the case.

We assume in the following the simplest possible source: a
monopole source that is located at ~xs = (0.3, 0, 0) m whose di-
rectivity is known at 1800 equi-angularly spaced positions on a
spherical surface that is centered around the coordinate origin and
has a radius of R = 1 m. We use these simulated measurement data
to extract a conventional SH representation (1) of the directivity of
order L = 6 by means of a least-squares fit.

(a) Classical SH representation, Eq. (1), f = 600 Hz

(b) Classical SH representation, Eq. (1), f = 1500 Hz

(c) Proposed representation, Eq. (5), f = 1500 Hz

(d) From left to right: original measured; original order limited; pro-
posed at measurement surface; proposed extrapolated

Fig. 1. Magnitude of the directivity of a 6th-order monopole dis-
placed by 0.3 m from the coordinate origin evaluated at 1 m distance
in the horizontal plane and extrapolated to 10 m distance

Fig. 1(a) and (b) illustrate the magnitude of this 6th-order direc-
tivity at two different frequencies. It can be seen that the original di-
rectivity is represented well at frequencies at which the wavelength
is longer than the displacement (Fig. 1(a)). At higher frequencies
as in Fig. 1(b), the order-limited representation departs substantially
from the original directivity. This observation is one facet of a high-
frequency roll-off that is inherent to order-limited translated SH ex-
pansions [31, 32]. The roll-off is clearly visible in Fig. 1(d). The
departure is maintained when extrapolating the directivity to large
distances (see the right-most plot in Fig. 1(b)). Extrapolation was
performed based on (8). Note that the results are identical when
using the analytical expressions of the SH representation of the dis-
placed monopole (that are obtained via (2)) due to the orthogonality
of the SH and the linear independence of the spherical Hankel func-
tions in (1).



(a) Modelled directivity
based on (5); the red lines

connect the original
measured data points

(b) Directivity at 1 m
measured inside the FDTD

simulation

Fig. 2. Directivity of a singing voice at f = 2000 Hz modeled based
on a sparse set of measurement points

Our solution shown in Fig. 1(c) is capable of replicating the orig-
inal magnitude directivity much better at any frequency. This cir-
cumstance is also reflected by the time-frequency magnitude spec-
trum of the directivity evaluated along the equator of the reference
sphere as well as at a 10 m distance that is depicted in Fig. 1(d).

4.2. Case Study 2: Sparsely-measured Directivity of a Singing
Voice

This example demonstrates the convenience of the proposed meth-
ods for the interpolation of directivities.

The database [33] that accompanies [34] contains recordings of
two classical singers performing a glissando over one octave (i.e.,
a complex tone sweep). The set of partials may be interpreted as a
staggered sweep over a wide frequency range so that the correspond-
ing impulse responses can be computed via deconvolution. The
recordings were made with two circular microphone arrays with 32
elements each and placed along the horizontal and median planes,
respectively, at a distance of 1 m from the singer’s head. Effectively,
only 62 measurement points are available due to coincidence of two
of the microphones. This is a very sparse set of data points for which
established directivity models are not suitable. It is not possible to
obtain a general directivity model as in (1) from these data. Other
comparably sparse representations of sound source directivity are
the Common Loudspeaker Format [15] that provides only magnitude
data in 3rd-octave bands or databases for musical instrument direc-
tivities that also provide data primarily in 3rd-octave bands, [11].

We applied a combination of rotation and interpolation to the
data in the file IR_a_long_sweep.mat to produce magnitude
data points at locations all around a spherical surface. Note that such
interpolation is not possible for the phase of the directivity due to the
ambiguitites due to the periodicity of the phase. We then performed
a least-squares fit of a 6th-order SH model according to (6) together
with a minimum-phase response. The resulting directivity is shown
in Fig. 2(a).

This directivity was injected via the signals âl,m(ω) given by (9)
into an FDTD simulation (a simple seven-point scheme, as described
in [9], and operating at 44.1 kHz). Technically, the FDTD simula-
tion performs an extrapolation of the directivity that is a numeri-
cal approximation to (8). We still incorporate FDTD here for com-
pleteness as an application example. The directivity produced in the
FDTD simulation is depicted in Fig. 2(b), and is obtained through an
array of virtual microphones placed in the simulated acoustic field.
The data are numerically well-conditioned, and it can be seen that

the directivities coincide. This coincidence is, as expected, indepen-
dent of the distance at which the directivity is evaluated inside the
FDTD simulation and precise circumstances are to be investigated
in future work.

5. CONCLUSIONS

We have revisited here a model for sound source directivity that is
based on designing a far-field directivity such that its magnitude
matches the magnitude of a near-field directivity on a spherical
surface around the sound source. We have demonstrated with two
case studies that this model allows two fundamental limitations of
nearfield models to be overcome: 1) the high-frequency roll-off of
order-limited spherical harmonics models of the directivity, and 2)
the inability of establishing a model based on a sparse set of mea-
surement points. We have also presented a first result on integrating
the directivity model into time-domain wave-based room acoustic
simulations.

Although a rigourous proof is not given here, there are strong
indications that the proposed model leads to only minor deviations
from the original directivity if the sound source is small. We will
establish limits on the validity of the presented model regarding gen-
eral (spatially extended) sound sources in future work.

Appendices
A. CONVERGENCE OF THE SIGNALS âl,m(ω)

We study the convergence of (9) with respect to frequency in the fol-
lowing. Applying the large-argument approximation of the spherical
Hankel function given by (12) to (9) yields

âl,m(ω) =
4πR

(iω)lc
e−i ωR

c W̊l,m(R,ω), as ω →∞ , (10)

which converges for high frequencies (assuming that the coefficients
W̊l,m(R,ω) converge).

Applying the small-argument approximation of the spherical
Hankel function given by (14) to (9) yields

âl,m(ω) =
4πc (−1)l iω

i(2l − 1)!!

(
R

c

)2

W̊l,m(R,ω), as ω → 0 ,

(11)
which converges for low frequencies.

B. APPROXIMATIONS OF SPHERCIAL BESSEL AND
HANKEL FUNCTIONS

The large argument approximation of the spherical Hankel function
is given by [17, p. 197]

h
(1)
l (x) ≈ (−i)l+1 eix

x
as x→∞ . (12)

The small argument approximations of the spherical Bessel and Han-
kel functions are given by [17, p. 196, 197]

jl (x) ≈ xl

(2l + 1)!!

(
1− x2

2(2l + 3)
+ . . .

)
as x→ 0 , (13)

and

h
(1)
l (x) ≈ −i

(2l − 1)!!

xl+2
as x→ 0 , (14)

respectively.
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