
ar
X

iv
:1

91
1.

00
46

5v
2

 [
cs

.L
G

]
 1

8
Fe

b
20

20

ARSM GRADIENT ESTIMATOR FOR SUPERVISED LEARNING TO RANK

Siamak Zamani Dadaneh†∗ Shahin Boluki†∗ Mingyuan Zhou‡ Xiaoning Qian†

† Texas A&M University, Department of Electrical and Computer Engineering

College Station, Texas, USA
‡ University of Texas at Austin, Department of Information, Risk, and Operations Management

Austin, Texas, USA

ABSTRACT

We propose a new model for supervised learning to rank. In

our model, the relevance labels are assumed to follow a cate-

gorical distribution whose probabilities are constructed based

on a scoring function. We optimize the training objective with

respect to the multivariate categorical variables with an unbi-

ased and low-variance gradient estimator. Learning-to-rank

methods can generally be categorized into pointwise, pair-

wise, and listwise approaches. Although our scoring function

is pointwise, the proposed framework permits flexibility over

the choice of the loss function. In our new model, the loss

function need not be differentiable and can either be pointwise

or listwise. Our proposed method achieves better or compa-

rable results on two datasets compared with existing pairwise

and listwise methods.

Index Terms— Learning to rank, Monte Carlo Gradient

Estimation, Deep learning

1. INTRODUCTION

Learning to rank is fundamental to information retrieval,

E-commerce, and many other applications, for ranking

items [1]. In this work we focus on document retrieval

without loss of generality. Document retrieval (i.e., document

ranking) has applications in large-scale item search engines,

which can generally be described as follows: There is a col-

lection of documents (items). Given a query (e.g. a query

entered by a user in the search engine), the ranking function

assigns a score to each document, quantifying the relative

relevance of the document to the query. The documents are

ranked in the descending order based on these scores and the

top ranked ones are returned.

Traditional approaches rank documents based on unsuper-

vised models of words appearing in the documents and query

and do not need any training [2]. Supervised machine learn-

ing for ranking has become popular due to the availability of

more signals related to relevance of documents, such as click

items or search log data [1].

∗ These authors contributed equally to this work

The bulk of machine learning methods for learning to rank

can roughly be categorized as pointwise, pairwise and list-

wise methods. Pointwise methods cast the ranking problem

as a regression problem for predicting relevance scores [3]

or a multiple ordinal classification to predict categorical rel-

evance levels [4]. Pairwise approaches take document pairs

as instances in learning, and formalize the learning-to-rank

problem as that of classification. More precisely, they collect

document pairs to query the relative ranking from the under-

lying unknown ranking lists. Classification models are then

trained with the labeled data for ranking [5]. Finally, listwise

methods use ranked document lists instead of document pairs

as instances in learning and define an optimization loss func-

tion over the entire ranked list(s) [6].

In this paper, we propose a new framework for super-

vised learning to rank. Specifically, we define a scoring func-

tion that maps the input vector of features for a document to

the probability parameters of a categorical distribution, where

each category represents the relative relevance of the input

document to the query. We then define the objective func-

tion of learning-to-rank as the expectation of a loss function,

which determines the distance between predicted and true rel-

evance labels of the input document, with respect to the cate-

gorical distribution parameterized by the scoring function. To

achieve a rich family of ranking algorithms, we employ neural

networks as scoring functions.

Due to its novel discrete structure, we exploit stochastic

gradient based optimization to learn the parameters of the

scoring function. The main difficulty arises when back-

propagating the gradients through categorical variables.

The recently proposed augment-REINFORCE-swap-merge

(ARSM) [7] gradient estimator provides a natural solution

with unbiased low-variance gradient updates during the train-

ing of our proposed learning-to-rank framework. ARSM

first uses variable augmentation, REINFORCE [8], and Rao-

Blackwellization [9] to re-express the gradient as an expec-

tation under the Dirichlet distribution, then uses variable

swapping to construct differently expressed but equivalent

expectations, and finally shares common random numbers

between these expectations to achieve significant variance

http://arxiv.org/abs/1911.00465v2

reduction.

The proposed framework, hereby referred to as ARSM-

L2R, has main advantage over the existing learning-to-rank

methods. More precisely, due to the utilization of ARSM gra-

dient estimator, the loss function assessing the distance be-

tween predicted and true document relevance labels need not

be differentiable. This significantly enriches the choices of

loss functions that can be employed. Specifically, in our ex-

periments, we optimize the truncated normalized discounted

cumulative gain (NDCG) [10].

Comprehensive experiments conducted on benchmark

datasets demonstrate that our proposed ARSM-L2R method

achieves better or comparable results with pairwise and list-

wise approaches in terms of common ranking metrics such as

truncated NDCG and mean average precision (MAP).

The remainder of this paper is organized as follows. In

Section 2, we present the methodology, including the new

formulation of ARSM-L2R for supervised learning to rank,

and its parameter estimation using Monte Carlo gradient esti-

mates. Section 3 provides comprehensive experimental re-

sults for comparison with several existing learning-to-rank

methods. The paper is concluded in Section 4.

2. ARSM-L2R

2.1. Supervised learning to rank

In the supervised learning-to-rank setting, a set of queries

Q = {q(1), ..., q(N)} is given. Each query q(i) is associated

with a list of documentsd(i) = [d
(i)
1 , ..., d

(i)

n(i)], where d
(i)
j and

n(i) denote the jth document and size of d(i) respectively. In

addition, a list of scores y(i) = [y
(i)
1 , ..., y

(i)

n(i)] is available for

each list of documents d(i). The score y
(i)
j represents the rel-

evance degree of document d
(i)
j to query q(i), and can be a

judgment score explicitly or implicitly given by humans [6].

Higher scores imply more relevant documents.

For each query-document pair (q(i), d
(i)
j), a P -dimensional

vector of features x
(i)
j is constructed. The training set is rep-

resented as
{

(x(i),y(i))
}N

i=1
. The objective of learning is to

create ranking functions that map the input query-document

features to scores resembling the true relevant scores. In the

following discussions, we drop the query index (i) to avoid

cluttering the notations.

In this paper, we formulate the supervised learning-

to-rank problem as maximizing an objective, expressed

as an expectation over multivariate categorical variables.

More specifically, given n documents for a query, let zj ∈
{1, . . . , C} denote the relevance label for jth document,

where C is the number of possible levels of relevance for

each document. In our proposed generative model, each zj
is distributed according to a categorical distribution whose

probabilities are constructed based on a scoring function

Tθ : RP → R
C parameterized by θ:

zj ∼ Cat(σ(φj)), φj = Tθ(xj). (1)

Here σ(φj) = (eφj1 , ..., eφjC)/
∑C

c=1 e
φjc is the softmax

function. We use multi-layer perceptrons (MLPs) as scoring

functions, thus θ corresponds to the collection of weight ma-

trices of MLPs. For each realization of categorical variables

z = (z1, ..., zn), we employ a loss function ℓ to determine

their distance from the true labels y = (y1, ..., yn). We then

define the learning-to-rank optimization problem as finding:

θ̂ = argmin
θ

E
z∼

∏
n
j=1 Cat(zj ;σ(φ))[ℓ(z,y)]

:= argmin
θ

E(Φ), (2)

where ℓ(·, ·) can be any loss function measuring the dissimi-

larity of two vectors of ordinal labels. We resort to stochas-

tic gradient based methods to solve the optimization problem

in (2). Backpropagating the gradient through discrete latent

variables have been recently studied extensively [7, 11–13].

For optimizing (2), the challenge lies in developing a low-

variance and unbiased estimator for its gradient with respect

to φ, which is denoted by ∇φE(Φ).

2.2. ARSM gradient estimator

We employ Augment-REINFORCE-Swap-Merge (ARSM)

gradient estimator for training the scoring functions described

in the previous section. To describe this algorithm, we start

by the simple objective function E(φ) := E
z∼Cat(σ(φ))[f(z)]

with respect to a univariate categorical variable, where f(z)
is the reward function and φ := (φ1, . . . , φC). In the aug-

mentation step, the gradient of E(φ) can be expressed as an

expectation under a Dirichlet distribution as

∇φc
E(φ) = E

π∼Dir(1C)[f(z)(1− Cπc)],

z := arg min
k∈{1,...,C}

πke
−φk . (3)

Given the vector π, we denote the vector obtained af-

ter swapping kth and mth elements of π as πm⇋k :=
(πm⇋k

1 , . . . , πm⇋k
C), where πm⇋k

m = πk, πm⇋k
k = πm

and for c /∈ {m, k} we have πm⇋k
c = πc. Exploiting

the symmetrical property πm⇋k ∼ Dir(1C), and sharing

common random numbers between different expectations to

significantly reduce Monte Carlo integration variance leads

to another unbiased estimator referred as ARS estimator:

∇φc
E(φ) = E

π∼Dir(1C)[f
c⇋k
∆ (1− Cπk)],

f c⇋k
∆ := f(zc⇋k)−

1

C

C
∑

m=1

f(zm⇋k), (4)

where zc⇋k := argmink′∈{1,...,C} π
c⇋k
k′ e−φk′ and k is the

reference category. Finally, the ARS estimator can be further

improved by considering all swap operations, and adding a

merge step to construct the ARSM estimator as

∇φc
E(φ) = E

π∼Dir(1C)

[

C
∑

k=1

f c⇋k
∆ (1/C − πk)

]

. (5)

2.3. ARSM for learning to rank

To employ ARSM for learning to rank, we need to con-

sider the optimization problem with respect to the multi-

variate categorical variables z = (z1, ..., zn). Let zc⇋k =
(zc⇋k

1 , ..., zc⇋k
n) denote the multivariate swapping whose

elements are defined, similar to those in (4) and (5), as

zc⇋k
j := argmink′∈{1,...,C} π

c⇋k
jk′ e−φjk′ . Then the mul-

tivariate extension of ARSM gradient estimator for the

learning-to-rank objective in (2) can be expressed as [7]:

∇φjc
E(Φ) = E

Π∼
∏

n
j=1 Dir(πj ;1C)

[

C
∑

k=1

ℓc⇋k
∆ (1/C − πjk)

]

,

(6)

where ℓc⇋k
∆ = ℓ(zc⇋k,y) − 1

C

∑C

m=1 ℓ(z
m⇋k,y). Since

we define the categorical distribution parameter Φ in terms

of a neural network with parameters θ, the final gradients are

computed using the chain rule as

∇θE(Φ) =

n
∑

j=1

C
∑

c=1

∇φjc
E(Φ)

∂φjc

∂θ

= ∇θ

(

n
∑

j=1

C
∑

c=1

∇φjc
E(Φ)φjc

)

. (7)

The estimated gradients are then utilized in a stochastic

optimization process to learn the model parameters. Algo-

rithm 1 summarizes the parameter learning for ARSM-L2R.

2.4. Loss function and rank prediction

The loss function ℓ(z,y) in (2) measures the dissimilarity be-

tween predicted categorical labels z and the true labels y. In

this work, we utilize the negative truncated NDCG as the loss

function of ARSM-L2R. The calculation of NDCG only relies

on the sorting of the predicted labels z, and the true labels y.

Furthermore, our experiments show that setting the number of

possible levels of relevance C to be higher than the number

of true levels in y improves the performance of ARSM-L2R.

Hence, for all experiments in this paper we set C = 20.

After the parameters of the scoring function are learned

in the training phase, the probability of different levels of

relevance for the test documents can be calculated by sim-

ply passing the documents features through the scoring func-

tion. We then construct the final scores of the test docu-

ments by a weighted combination of these probabilities, and

sort the documents based on these scores. More precisely,

input : Document labels y and query-document

features x

output: Parameters θ of scoring function

Initialize θ randomly;

while not converged do
Calculate categorical distribution parameters

Φ = (φ1, ...,φn) ∈ R
C×n;

Sample πj ∼ Dirichlet(1C) for j = 1, ..., n;

Let zj = argmink∈{1,...,C}(lnπjk − φjk) for

j = 1, ..., n, to obtain the true categorical labels

z = (z1, ..., zn);
Initialize the diagonal of the loss matrix

L ∈ R
C×C with ℓ(z,y);

for (c, k) ∈ {(c, k)}c=1:C,k<c do
Let

zc⇋k
j = argmink′∈{1,...,C}(lnπ

c⇋k
jk′ − φjk′)

for j = 1, ..., n;

Denote zc⇋k = (zc⇋k
1 , ..., zc⇋k

n);

Let Lck = Lkc = ℓ(zc⇋k,y)
end

Let L̄·k = 1
C

∑C

c=1 Lck for k = 1, ..., C;

Let gφjc
=

∑C

k=1(Lck − L̄·k)(
1
C
− πjk) for all

(j, c) ∈ {(j, c)}j=1:n,c=1:C ;

Update θ = θ + ηθ∇θE(Φ), with step size ηθ
end

Algorithm 1: Parameter inference in ARSM-L2R.

given the probability of different labels pc for a test docu-

ment, we calculate its overall ranking score as
∑C

c=1 c × pc,

where c ∈ {1, 2, . . . , C} and higher values of c correspond

to more relevant levels. Our experiments show that the per-

formance of ARSM-L2R is not sensitive to the choice of the

weight combination scheme.

3. EXPERIMENTS

3.1. Datasets

We evaluate the performance of ARSM-L2R on two widely

tested benchmark datasets, including a query set from Mil-

lion Query track of TREC 2007, denoted as MQ2007 [14], as

well as the OHSUMED dataset [15]. Each dataset consists of

queries, corresponding retrieved documents and labels pro-

vided by human experts. The possible relevance labels for

each document are “relevant”, “partially relevant”, and “not

relevant”. We use the 5-fold partitions provided in the origi-

nal dataset for 5-fold cross validation in the experiments. In

each fold, there are three subsets for learning: training set,

validation set and testing set. The properties of these learning

to rank datasets are presented in Table 1.

Table 1. Properties of learning-to-rank datasets used in the

experiments.

dataset #queries #documents #features

MQ2007 1700 ∼25,000,000 46

OHSUMED 106 ∼350,000 45

Table 2. Performance of different learning-to-rank methods

on MQ2007 dataset.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

RankSVM 0.4045 0.4019 0.4072 0.4383 0.4644

ListNet 0.4002 0.4091 0.4170 0.4440 0.4652

AdaRank-MAP 0.3821 0.3984 0.4070 0.4335 0.4577

AdaRank-NDCG 0.3876 0.4044 0.4102 0.4369 0.4602

ARSM-L2R 0.4051 0.4112 0.4159 0.4432 0.4608

3.2. Baselines

We compare the performance of our ARSM-L2R with sev-

eral state-of-the-art baselines, including a pairwise method of

RankSVM [16], a listwise method of ListNet [6], and other

listwise methods that optimize lower bounds of different eval-

uation measures: AdaRank-MAP, and AdaRank-NDCG [17].

3.3. Evaluation metrics

We use two popular learning-to-rank scoring functions to

compare the predicted rankings of the test documents with

their true rankings: truncated Normalized Discounted Cumu-

lative Gain (NDCG@R) [10] and Mean Average Precision

(MAP) [18]. NDCG (DCG) has the effect of giving high

scores to the ranking lists in which relevant documents are

ranked high. Average Precision (AP) represents the averaged

precision over all the positions of documents with relevant

label for query q(i). Denoting the ranking list r(i) on d(i),

MAP is defined as

MAP =
1

N

N
∑

i=1

AP(q(i)) =
1

N

N
∑

i=1

∑n(i)

j=1 w
(i)
j y

(i)
j

∑n(i)

j=1 y
(i)
j

, (8)

where w
(i)
j =

∑

l:r
(i)
l

≤r
(i)
j

y
(i)
l

r
(i)
j

. NDCG@R is calculated by

NDCG@R =
1

N

N
∑

i=1

NDCG@R(i)

=
1

N

N
∑

i=1

1

IDCG@R(i)

∑

j:r
(i)
j

≤R

2y
(i)
j − 1

log2(1 + r
(i)
j)

,

(9)

where if rtrue represents the true ranking list of d(i), then

IDCG@R(i) =
∑

j:r
(i)
true,j

≤R

2
y
(i)
j −1

log2(1+r
(i)
j)

. R here represents

the truncation level.

Table 3. Performance of different learning-to-rank methods

on OHSUMED dataset.

Method NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

RankSVM 0.4958 0.4207 0.4164 0.4140 0.4468

ListNet 0.5326 0.4732 0.4432 0.4410 0.4495

AdaRank-MAP 0.5388 0.4682 0.4613 0.4429 0.4418

AdaRank-NDCG 0.5330 0.4790 0.4673 0.4496 0.4424

ARSM-L2R 0.5601 0.4642 0.4546 0.4460 0.4503

3.4. Implementation details

For the scoring function neural network, we employ a fully

connected neural network with one hidden layer of 500 units

and the tanh nonlinear activation function. We initialize the

weights of the neural network by Glorot method [19], and

train ARSM-L2R using the Adam optimizer [20] with a learn-

ing rate of 10−4. The algorithm is run for a total of 2000

epochs, and the ranking metrics on the validation sets are

monitored for choosing the best performing neural network

weights. ARSM-L2R is implemented in Tensorflow [21].

3.5. Results and discussions

We compare the performance of the different methods based

on NDCG@1, NDCG@3, NDCG@5, NDCG@10, and

MAP. The results for MQ2007 and OHSUMED datasets

are provided in Tables 2 and 3, respectively. Our ARSM-

L2R achieves the highest NDCG@1 and NDCG@3 on the

MQ2007 dataset. On the OHSUMED dataset ARSM-L2R

has a significantly higher NDCG@1 compared with all the

other methods tested. It also shows the best MAP on this

dataset. It is worth mentioning that NDCG@1 is one of the

most important metrics for ranking systems, since it quanti-

fies the relevance of the top ranked item. It is interesting to

note that our method only optimizes a rough approximation

of the evaluation metric NDCG, but shows the best perfor-

mance on both two metrics for each dataset and comparable

results for the rest of the metrics on the datasets. Our pro-

posed method achieves better or comparable performance

due to utilizing a loss function more directly related to rank-

ing performance and also taking advantage of unbiased and

low-variance gradient estimation.

4. CONCLUSIONS

We have developed a new supervised learning-to-rank model—

ARSM-L2R—that generates relevance labels based on a

categorical model with probabilities estimated by a MLP.

The training objective is optimized with respect to the mul-

tivariate categorical variables with an unbiased and low-

variance gradient estimator, ARSM. Our method can employ

a non-differentiable loss function as opposed to the existing

learning-to-rank methods. The experimental results show

that ARSM-L2R achieves better or comparable results with

pairwise and listwise approaches.

Acknowledgement

The presented materials are based upon the work supported

by the National Science Foundation under Grants CCF-

1553281, IIS-1812641, IIS-1812699, and CCF-1934904. We

also thank Texas A&M High Performance Research Com-

puting and Texas Advanced Computing Center for providing

computational resources to perform experiments in this work.

5. REFERENCES

[1] Tie-Yan Liu et al., “Learning to rank for information re-

trieval,” Foundations and Trends R© in Information Re-

trieval, vol. 3, no. 3, pp. 225–331, 2009.

[2] W Bruce Croft, Donald Metzler, and Trevor Strohman,

Search engines: Information retrieval in practice, vol.

520, Addison-Wesley Reading, 2010.

[3] David Cossock and Tong Zhang, “Subset ranking using

regression,” in International Conference on Computa-

tional Learning Theory. Springer, 2006, pp. 605–619.

[4] Ping Li, Qiang Wu, and Christopher J Burges, “Mcrank:

Learning to rank using multiple classification and gradi-

ent boosting,” in Advances in neural information pro-

cessing systems, 2008, pp. 897–904.

[5] Thorsten Joachims, “Optimizing search engines using

clickthrough data,” in Proceedings of the eighth ACM

SIGKDD international conference on Knowledge dis-

covery and data mining. ACM, 2002, pp. 133–142.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and

Hang Li, “Learning to rank: From pairwise approach to

listwise approach,” in Proceedings of the 24th interna-

tional conference on Machine learning. ACM, 2007, pp.

129–136.

[7] Mingzhang Yin, Yuguang Yue, and Mingyuan Zhou,

“ARSM: Augment-reinforce-swap-merge estimator for

gradient backpropagation through categorical vari-

ables,” arXiv preprint arXiv:1905.01413, 2019.

[8] Ronald J Williams, “Simple statistical gradient-

following algorithms for connectionist reinforcement

learning,” Machine learning, vol. 8, no. 3-4, pp. 229–

256, 1992.

[9] George Casella and Christian P Robert, “Rao-

Blackwellisation of sampling schemes,” Biometrika,

vol. 83, no. 1, pp. 81–94, 1996.

[10] Kalervo Järvelin and Jaana Kekäläinen, “IR evaluation

methods for retrieving highly relevant documents,” in

Proceedings of the 23rd annual international ACM SI-

GIR conference on Research and development in infor-

mation retrieval. ACM, 2000, pp. 41–48.

[11] George Tucker, Andriy Mnih, Chris J Maddison, John

Lawson, and Jascha Sohl-Dickstein, “Rebar: Low-

variance, unbiased gradient estimates for discrete latent

variable models,” in Advances in Neural Information

Processing Systems, 2017, pp. 2627–2636.

[12] Will Grathwohl, Dami Choi, Yuhuai Wu, Geof-

frey Roeder, and David Duvenaud, “Backpropaga-

tion through the void: Optimizing control variates

for black-box gradient estimation,” arXiv preprint

arXiv:1711.00123, 2017.

[13] Shahin Boluki, Randy Ardywibowo, Siamak Za-

mani Dadaneh, Mingyuan Zhou, and Xiaoning Qian,

“Learnable Bernoulli dropout for Bayesian deep learn-

ing,” arXiv preprint arXiv:2002.05155, 2020.

[14] Tao Qin and Tie-Yan Liu, “Introducing LETOR 4.0

datasets,” CoRR, vol. abs/1306.2597, 2013.

[15] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li, “LETOR:

A benchmark collection for research on learning to rank

for information retrieval,” Information Retrieval, vol.

13, no. 4, pp. 346–374, 2010.

[16] Ching-Pei Lee and Chih-Jen Lin, “Large-scale linear

ranksvm,” Neural computation, vol. 26, no. 4, pp. 781–

817, 2014.

[17] Jun Xu and Hang Li, “AdaRank: A boosting algorithm

for information retrieval,” in Proceedings of the 30th an-

nual international ACM SIGIR conference on Research

and development in information retrieval. ACM, 2007,

pp. 391–398.

[18] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al.,

Modern information retrieval, vol. 463, ACM press

New York, 1999.

[19] Xavier Glorot and Yoshua Bengio, “Understanding the

difficulty of training deep feedforward neural networks,”

in Proceedings of the thirteenth international confer-

ence on artificial intelligence and statistics, 2010, pp.

249–256.

[20] Diederik P Kingma and Jimmy Ba, “Adam: A

method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[21] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Geoffrey Irving, Michael Isard, et al.,

“Tensorflow: A system for large-scale machine learn-

ing,” in 12th USENIX Symposium on Operating Sys-

tems Design and Implementation. 2016, OSDI’16, pp.

265–283, USENIX Association.

	1 Introduction
	2 ARSM-L2R
	2.1 Supervised learning to rank
	2.2 ARSM gradient estimator
	2.3 ARSM for learning to rank
	2.4 Loss function and rank prediction

	3 Experiments
	3.1 Datasets
	3.2 Baselines
	3.3 Evaluation metrics
	3.4 Implementation details
	3.5 Results and discussions

	4 Conclusions
	5 References

