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ABSTRACT
Current generative networks are increasingly proficient in
generating high-resolution realistic images. These generative
networks, especially the conditional ones, can potentially
become a great tool for providing new image datasets. This
naturally brings the question: Can we train a classifier only
on the generated data? This potential availability of nearly
unlimited amounts of training data challenges standard prac-
tices for training machine learning models, which have been
crafted across the years for limited and fixed size datasets.
In this work we investigate this question and its related chal-
lenges. We identify ways to improve significantly the per-
formance over naive training on randomly generated images
with regular heuristics. We propose three standalone tech-
niques that can be applied at different stages of the pipeline,
i.e., data generation, training on generated data, and deploy-
ing on real data. We evaluate our proposed approaches on a
subset of the ImageNet dataset and show encouraging results
compared to classifiers trained on real images.

Index Terms— Image classification, generative networks

1. INTRODUCTION

In recent years, generative networks have made great progress.
The state-of-the-art generative adversarial networks (GANs)
can generate diverse high-resolution images almost indis-
tinguishable from real images. Among others one of the
main objectives of learning generative models is to get an un-
bounded supply of data for training machine learning models,
in particular deep neural networks. This could significantly
reduce expenses and work required for data acquisition or
could be helpful when the original data cannot be shared,
e.g. due to privacy. Moreover, storing a generator network is
often lighter than storing the entire dataset, for example Big-
GAN [1] takes 225MB while ImageNet [2] takes ∼150GB.

Using GANs to generate abundant and diverse training
data has been a longstanding motivation for research on
GANs. However until recently, the obvious low quality of
the generated images (e.g. low resolution, many artefacts)
discouraged any attempts of training classifiers with such
images only. Researchers focused mostly on improving the

*Victor Besnier worked on this project as an intern at Valeo.ai, Paris.

Fig. 1: BigGAN can potentially generate diverse and photore-
alistic images. However, with random sampling, the diversity
is much lower than a real image dataset of the same size. The
proposed methods increase diversity and effective number of
samples, leading to better performance for a classifier trained
on generated images.

photorealism and diversity of the images thanks to the newly
introduced metrics to measure these attributes, namely Incep-
tion Score (IS) [3] and Frechet Inception Distance (FID) [4].
Some tried using synthetic images for augmenting the exist-
ing set of real images to boost up performance [5, 6, 7].

The current state-of-the-art for conditional image gener-
ator is BigGAN [1]. BigGAN has received lot of attention
as it can generate high resolution, photorealistic, diverse im-
ages for all 1,000 semantic classes of ImageNet. Motivated
by the outstanding IS and FID scores of BigGAN, Ravuri and
Vinyals [8] train a classifier over images generated from Big-
GAN and test it on the validation set of ImageNet. They find
that there is a significant drop in accuracy, 27.9%, compared
to the classifier trained on the real images from training set of
ImageNet1, concluding that IS and FID are not suitable met-
rics for this task.

In this work, we address this challenging question of drop
in performance when deep classifiers are trained on synthetic
generated data and tested on real images. We estimate that
the drop is probably due to the fact that the generated images,
when sampled randomly, are less diverse than those in the real
dataset. However, since we have the generator we should be
no longer limited in the amount of training samples we can
have nor confined to randomly sampling from the generator

1We note that the training set of ImageNet is very large, ∼1,300 images
per class, making it very challenging for a classifier trained on the same
amount of generated data to outperform one trained on ImageNet.
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(Fig. 1). To overcome this drop in performance, we propose
in this paper three learning strategies: (1) a method to gener-
ate more informative data from the generator via latent code
optimization; (2) a pragmatic strategy to use continuous sam-
pling from a generator while training and hence, to increase
diversity of the data; (3) a test time adaptation method to im-
prove accuracy. Our three contributions may be combined
and we will evaluate all the gains with BigGAN trained on
ImagNet.

2. RELATED WORK

Improvement of GANs. GANs are notoriously unstable
and difficult to train, requiring several specific architectural
choices and hyperparameter tuning. Several works have im-
proved stability of GAN training via optimization [9, 10]
or architectural means [11]. BigGAN [1] is a pinnacle of
both scientific and engineering expertise accumulated across
years of dealing with GANs. BigGAN is a class-conditional
GAN whose training benefits from large batch sizes, high
resolution images, and skip-connections for the latent code
in the generator. The quality of the generated images is
improved through sampling from Gaussian noise with trun-
cation. Given the quality of BigGAN samples, we consider it
to study training over synthetic images.2

Latent code optimization. Exploring a GAN’s latent
space through iterative optimization has been proposed to
generate more memorable images [12], different geometric
and photometric transformations of a given image [13] or
faces with specific attributes [14]. The focus of these works
is to generate realistic images. However this does not ensure
that a classifier trained on such images would do well. Our
latent code optimization aims to improve the performance
of the image classification network and we use it for mining
helpful codes for learning.

Training over generated data. In the quest for more
relevant metrics for evaluating GANs, recent studies started
analyzing the performance of classifiers trained on synthetic
images [15, 16, 8]. Shmelkov et al. [15] show that all pop-
ular GANs consistently under-perform by a significant mar-
gin against classifiers trained on real images. Ravuri and
Vinyals [8, 16] show that even for highly photorealistic im-
ages, e.g. from BigGAN [1], synthetic classifiers lag behind
real ones. Minor gains (+0.2%) can be obtained by mixing
real and synthetic images in specific settings. In this work,
we show that nontrivial distribution information learned by
recent GAN architectures can be mined and leveraged to-
wards competitive classifiers trained with supervision from
synthetic data only.

2Given the cost of training BigGAN (24-48 hours on a Google TPU v3
Pod with 128 core for the smallest model with 128×128 images), we do not
train it ourselves and use the pretrained model provided by the authors.

3. APPROACH

The aim of this work is to propose methods to use off-
the-shelf pre-trained latent variable generative models for
training deep networks. Specifically we consider the set-up
where, given only a pre-trained class-conditional GAN for
image generation, one wants to train an image classifier with
only images generated by this GAN.

Now to describe our approaches, we first introduce the
notation. Let G be a pre-trained class-conditional generative
network, which maps a latent code z given a class label y to
an image x i.e., x = G(z, y). The generator is assumed of
sufficient quality for the image x to be semantically classified
as y by a human. We are interested in generating a dataset
X gen of images with labels which can be then used to train a
classifier Cθ with parameters θ. A classifier takes an image as
input and gives scores for each class,

sx = Cθ(x) ∈ RK , (1)

where K is number of classes. We train the classifier by it-
eratively minimizing the cross-entropy loss over the training
set. The loss on one image is defined as − log(sx[k]), where
k is the true class of x.

Note that when training the classifier on generated im-
ages, we do not update the generator G. As noticed in [16],
we also observe that if we simply sample the dataset X gen
from G to train Cθ, there is a significant drop in accuracy
compared to training Cθ on a real dataset X real. Reducing
this performance gap is our aim. To this end, we propose
three distinct and independent methods, as described below.

3.1. Hard Sample Mining (HSM) with latent code opti-
mization

Hard mining is a popular method in metric learning. The key
intuition is to use harder or more informative samples from
the training data to train the model. Such hard samples are in-
teresting because they lead to increased robustness and better
accuracy.

Now when training from generated images, we can use
the generator to produce more informative images rather than
drawing mere samples. The more informative or harder im-
ages are specific to the current state of the classifier. Let C(i)

θ

be the classifier at an iteration i during the training. The hard
images for C(i)

θ would be the images which are difficult to
classify correctly by C(i)

θ , i.e., with low classification score
for the true class. For generating such an image for a given
class y, we propose to optimize iteratively an original, random
latent code z to minimize the score of the class predicted by
C

(i)
θ (not of the true class, as will be discussed later) for new

image G(znew, y) i.e.,

k∗ = arg maxC
(i)
θ (G(z, y)), (2)



Fig. 2: Overview of the proposed HSM and DS methods for training. In HSM, we minimize the maximum of logit over z.
In DS, at every epoch we replace some part of the data with new samples. Note that the methods work at different stages of the
full pipeline and can be applied independently.

zj+1 = zj − η∇zjszj ,y[k∗], (3)

where z0 = z and, szj ,y stands for C(i)
θ (G(zj , y)), hence

szj ,y[k∗] is the score of class k∗ with current classifier applied
to image G(zj , y) (Fig. 2). Here all the parameters of G and
C

(i)
θ are fixed and only the input of G, i.e., the latent code,

is optimized by back-propagating through G and C(i)
θ . The

optimized latent code will lead to a difficult image for C(i)
θ .

However this image is not necessarily a good or valid sample.
Since we optimize only for sample difficulty, the latent code
can change too strongly across iterative updates and it may no
longer follow the Gaussian prior expected by the generator.
We temper this drift and preserve the prior across updates by
scaling zj to have the same `2-norm as z0: zj ← zj

‖z0‖
‖zj‖ .

Note that in the objective above we do not minimize the
score of the correct class y, and we minimize instead the score
of the highest confidence class (regardless of the true label).
If the prediction is different from the true class, the image is
already difficult and thus our objective will lead to an easier
sample. This avoids generating overly hard samples, unlikely
to be learned by the classifier.

Collecting a dataset with HSM. Since the difficulty of
a sample is specific the performance of the model at a given
iteration, in order to build a relevant and diverse dataset we
should aggregate such samples from various intermediate
stages of training. To this end, we propose a simple algo-
rithm to use HSM for collecting a fixed size dataset X gen
of N samples within K semantic classes as given in Alg. 1.
The underlying idea is to initialize the dataset with M < N
samples, train a classifier on this data, then add to the dataset
M new samples collected with HSM for the classifier. We
keep alternating between training the classifier and collecting
M new samples with HSM until the dataset X gen reaches
N items. In Fig. 3, we provide a few qualitative examples
to illustrate the impact of HSM over the generated images.
Once the gathering of the entire set X gen is complete, we
train a new, final classifier on it.

Algorithm 1 Collecting fixed size dataset with HSM
1: Input: G, C, N , K . N : dataset size, K: #classes
2: Output: X gen

3: function FILLDATASET(M , WITHHSM, C)
4: X ← {}
5: for k = 1 · · ·K do
6: for m = 1 · · ·M/K do
7: z ← N (0, 1)
8: if WITHHSM then
9: z ← HSM(z, k,G,C) . mine hard code for

sample z for class k
10: x← G(z, k)
11: X .APPEND(x)
12: i← 0
13: Ci ← C
14: X gen ← FILLDATASET(M , FALSE, NONE) . M < N
15: for i = 1 · · ·N/M do
16: Ci ← TRAIN(Ci−1, X gen) . train Ci−1 for an epoch
17: X hsm ← FILLDATASET(M , TRUE, Ci)
18: X gen.APPEND(X hsm)
19: RETURN X gen

Algorithm 2 Classifier training with DS and HSM
1: Input: G, C, K, r, N . N : #samples per epoch
2: Output: C
3: i← 0
4: Ci ← C
5: X gen

i ← FILLDATASET(N , FALSE, NONE)
6: for i = 1 · · · I do
7: Ci ← TRAIN(Ci−1, X gen

i )
8: X hsm ← FILLDATASET(rN/2, TRUE, Ci)
9: Xnew ←FILLDATASET(rN/2, FALSE, NONE)

10: X gen
i ← SUBSET( X gen

i ) of size (1− r)N
11: X gen

i+1 ← X
gen
i ∪ X hsm ∪ Xnew

12: RETURN CI



Fig. 3: Effect of applying HSM at different iterations dur-
ing classifier training. The first image of each category is
sampled randomly. The other two images are generated from
HSM-computed codes at two different steps during training.
The difference between the images shows that the effect of
HSM is specific to the classifier.

3.2. Dataset Smoothing (DS)

As previously discussed, the models trained on generated data
X gen have lower performance compared toX real when using
sets of equal sizes, i.e., |X gen| = |X real|. This is caused by
the lower visual diversity of the generated data in comparison
to real data. We can afford to forego the dataset size constraint
and augment the diversity through additional examples, since
we have a generator that can practically generate unlimited
training data. Yet storing such a large dataset is not practi-
cal either. So, it is more pragmatic to generate the images
online while training. On the downside, generating data per-
petually will increase the training time significantly due to the
non-negligible cost of generating images. Moreover, training
on this continuously changing data causes training instabil-
ity, particularly in the first epochs. This is probably due to
differences in statistics of the generated data across training
batches.

To mitigate these drawbacks, we propose our approach of
dataset smoothing. The key idea is to progressively change
the dataset by only partially replacing the generated training
data with new samples every epoch, aiming for a diverse but
gradually changing dataset (Fig. 2). In detail, we start with
a generated dataset X gen, train the classifier on it. Then, we
replace a fraction r of X gen with new randomly sampled im-
ages. This can be combined with HSM by applying it on some
of the new images. The approach with HSM is summarized
in Alg. 2. With the smooth changing of the dataset, we ef-
fectively have the diversity as in continuous sampling, while
preserving a more stable and much faster training.

3.3. Batch Norm statistics Adaptation (BNA)

Batch Normalization (BN) [17] is a prominent architectural
innovation in deep neural networks widely used for robusti-
fying and accelerating training. BN stabilizes the distribu-
tion of hidden activations over a mini-batch during training
by transforming the output of a layer to have zero mean and
unit variance. BN layers first set the mean and variances of
activations, and subsequently scale and shift them via a set of

trainable parameters to maintain expressivity.
Formally, consider a mini-batch B of size m and the re-

spective activations h(k)i ∈ R, i = {1 . . .m} of a neuron k
for each sample in this mini-batch. We omit k for clarity.
BN transforms hi as follows:

ĥi = γ
hi − µB√
σ2
B + ε

+ β, (4)

where µB = 1
m

∑m
i=1 hi and σ2

B = 1
m

∑m
i=1(hi − µB)2 are

the mean and variance of mini-batchB for the considered neu-
ron, ε > 0 is a small constant , and (γ, β) ⊂ θ are learnable
parameters.

During training, BN normalizes each mini-batch using its
respective statistics µB and σ2

B computed on the fly. At the
same time BN estimates the mean and variance of the acti-
vations from the whole training set, denoted by µ̄ and σ̄2,
through exponential running averages with sub-unitary up-
date factor α. Formally, at training iteration t, the running
mean and variances are given by:

µ̄t = αµt−1B + (1− α)µ̄t−1 (5)

(σ̄2)t = α(σ2
B)t−1 + (1− α)(σ̄2)t−1.

We denote the set of estimated statistics for all BN layers in
our classifier network as ω = {µ̄, σ̄2}. A neural network
with BN layers is parameterized by two types of parameters:
θ, learned by backpropagation and gradient descent, and ω,
computed from feature activation statistics. We denote our
classifier using BN as Cθ,ω.

During testing, BN uses the estimated mean and variances
for normalizing input activations from test samples, enforcing
distributions of activations similar with training. BN assumes
that both train and test images are sampled from similar dis-
tributions and the expectations of the activation values from
the two sets are close to each other. Thus BN can be sensitive
to differences between train and test data, which occur for in-
stance in multi-domain training [18], domain adaptation [19].
Albeit BigGAN generates photorealistic samples, as we train
exclusively on synthetic images and test on real images, the
classifier Cθ,ω might be sensitive to this small domain gap.

In order to mitigate this, we leverage BN layers for a sim-
ple unsupervised domain adaptation of Cθ,ω from synthetic
to real images. We adapt the estimated BN statistics for real
images through a forward pass on unlabeled images from the
training set, without backpropagation, as the running averages
for µ̄ and σ̄2 are updated on the fly. In detail we compute
ωreal from real images with Eq. 5, while keeping the parame-
ters θ intact. We refer to this method as BatchNorm statistics
Adaptation (BNA).

4. EXPERIMENTS

In this section we evaluate the three proposed approaches to
learn with generated data. We first outline the datasets we use



Fixed dataset Continuous sampling Long training real images

HSM - X - X - X - X -
DS - - - - X X X X X

BNA - - X X - - X X X

Top-1 Accuracy 70.6 73.6 76.4 78.2 78.6 81.8 84.2 85.6 88.8 88.4

Table 1: Results for ImageNet-10 real test images. Performance of classifiers trained on generated images with all combina-
tions of the proposed methods. Each classifier is trained for 150 epochs (except Long training, where we let DS run for 1500
epochs) over a set of N = 13K images; in case of continuous sampling we replace 50% (i.e., 6, 500) of the images every epoch,
while fixed dataset is the usual setup where no images are replaced during training. In all setups we use N images per epoch.
First column, without applying any of the proposed methods, is the baseline. Each of the proposed methods individually shows
improvement over the baseline. The combination of the methods further improves the results.

and describe the evaluation method. Then, we give the details
of experimental setup followed by the experimental results
and their analysis.

Dataset. As we train only on generated images, we use
the real dataset just for testing and not for training. Since
we use BigGAN as generator, which is trained to generate
ImageNet-like images [2], we use ImageNet for evaluation.
ImageNet is a large dataset of 1.3M labeled images, with 1K
semantic classes. As the dataset is very large, we select 10
classes to evaluate our approaches with reasonable computa-
tion time and resources. We refer this subset of 10 classes as
ImageNet-10. We select the classes of ImageNet-10 to mim-
ick the ones from CIFAR-10 dataset [20]3. The 10 classes
are: aircraft carrier, balloon, fire truck, gazelle, goldfish,
labrador, red fox, redshank, race car, tabby cat. We use as
test set, images from the validation set of ImageNet for the
selected 10 classes, with 50 images per class. Finally, we use
real images from the train set of ImageNet-10 to train a clas-
sifier on real images to compare against.

Experimental setup. We use as evaluation metric the
Top-1 accuracy on real images, i.e., the percent of test images
classified correctly. For our experiments, we use as generator
a pre-trained BigGAN [1] that produces 128 × 128 images.4

For all the experiments we use ResNet-18 as classifier. We
use SGD optimizer with lr = 0.1, momentum, learning rate
decay and weight decay 1e− 4.

Results. We first assess the impact of our contribu-
tions individually and in combination (Table 1). We use as
baseline a classifier trained on random X gen without any of
the proposed approaches. HSM brings gains from 1.4% to
3.2% whatever the combination. DS improves the accuracy
by 7.4% to 8.2%. With BNA, which is just a post-training
adaptation on real data, scores get a boost of 3.8% to 5.8%.
Interestingly, all methods are complementary and any com-

3CIFAR-10 classes are broad categories, while ImageNet ones are fine-
grain. Thus we select representative classes from ImageNet manually,
e.g. labrador for dog. In place of CIFAR-10 classes with no equivalent (frog,
horse) we use red fox and balloon reported as top and respectively worst
performing classes in the experiments from [8].

4https://github.com/huggingface/pytorch-pretrained-BigGAN
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Fig. 4: Effect of replacement fraction r in DS. Classifica-
tion accuracy using DS on real images with varying r, i.e.,
fraction of the dataset being replaced with new images every
epoch. The figure shows plots for DS with and without BNA.

bination improves scores. Overall, by combining all three
proposed methods, we outperform the baseline by 15%. By
increasing the number of training iterations 10 times, we
reach 88.8% accuracy.

Ablation studies. We study the impact of DS with contin-
uous sampling, i.e., dynamically generating new samples ev-
ery epoch. We use as baseline a classifier trained over a fixed
size dataset X gen of N generated images, with |X gen| =
|X real|. For DS, we train another classifier for which at every
epoch we sample r×N new images and replace a part of the
generated dataset with them. At each epoch we have a con-
stant number of images N . In Fig. 4, we show the impact of
the replacement fraction on classification accuracy. The frac-
tion r is linearly related to the amount of samples generated
and time it requires during training. Thus, it is compelling to
have lower r. In general, increasing r improves accuracy, es-
pecially between no replacement and r = 0.1. The improve-
ment diminishes quickly and almost saturates after r = 0.5
at the expense of longer training time. In the same setup, we
can see that BNA systematically improves accuracy with up
to +5.8%. Interestingly, using BNA over DS with r = 0.5
has slightly better accuracy than replacing all (r = 1) which
moreover takes longer to train.



5. CONCLUSIONS

In this work we address the task of training a classifier using
solely generated data. We show that for practically unlimited
amounts of data, several standard practices in training models
could be revisited. We propose three standalone contributions
to this effect and show their benefits both when used individ-
ually or combined. The limitations of this study are related
to the reduced number of considered classes due to compu-
tation constraints and due to high variability in the quality
of BigGAN images across classes. Given the fast pace of
progress in GAN literature, steady improvements in the qual-
ity of the generated images are foreseeable. We expect that
the same questions addressed here will still arise when train-
ing over generated data from future GANs and our proposed
approaches are readily applicable in such context.
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