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ABSTRACT

Acoustic event classification (AEC) and acoustic event detection
(AED) refer to the task of detecting whether specific target events
occur in audios. As long short-term memory (LSTM) leads to state-
of-the-art results in various speech related tasks, it is employed as
a popular solution for AEC as well. This paper focuses on investi-
gating the dynamics of LSTM model on AEC tasks. It includes a
detailed analysis on LSTM memory retaining, and a benchmarking
of nine different pooling methods on LSTM models using 1.7M
generated mixture clips of multiple events with different signal-to-
noise ratios. This paper focuses on understanding: 1) utterance-level
classification accuracy; 2) sensitivity to event position within an ut-
terance. The analysis is done on the dataset for the detection of rare
sound events from DCASE 2017 Challenge. We find max pooling
on the prediction level to perform the best among the nine pooling
approaches in terms of classification accuracy and insensitivity to
event position within an utterance. To authors’ best knowledge, this
is the first kind of such work focused on LSTM dynamics for AEC
tasks.

Index Terms— Long short-term memory (LSTM), acoustic
event classification and detection, pooling functions

1. INTRODUCTION

Acoustic event classification (AEC) and acoustic event detection
(AED) refer to the task of detecting whether specific target events
occur in audios. It is of interest in many real-world scenarios, e.g.
traffic monitoring [1], surveillance [2, 3], etc. In recent years, with
deep learning based solutions burgeoning in various areas includ-
ing speech and language processing [4, 5], and computer vision [6],
there has been intensive research on improving AED performance
via neural networks. For instance, several new neural network archi-
tectures [7, 8, 9] were proposed for AED.

As long short-term memory (LSTM) [10] leads to state-of-the-
art results in various speech related tasks, e.g. automatic speech
recognition [4], keyword spotting [11], speaker identification [12],
whisper detection [13], it is employed as a popular solution for AEC
as well [14, 15, 16, 17, 18, 19, 20], typically combined with convolu-
tional neural networks (CNNs) [21]. To run applications mentioned
above on mobile devices or smart speakers, a model with small mem-
ory footprint is required. LSTM models have much less number of
parameters than CNN models while reasonable performance main-
tained. Besides, LSTM models can operate in a streaming mode
with a ring buffer, which has the benefit of low latency. We are
interested in understanding the memory dynamics for LSTM based
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Fig. 1: Two categories of pooling methods to generate utterance-
level prediction for LSTM models.

AEC models, i.e. for how long LSTM retains memory of happen-
ing acoustic events, as well as how to improve memory retaining for
specific pooling methods. Recent research investigates memory dy-
namics and control in recurrent neural networks (RNNs) including
LSTM [22]. There are comparisons on different pooling functions
for AEC/AED [9], and spatio-temporal attention pooling proposed
for audio scene classification [23].

Wang et al. [9] did a thorough analysis theoretically and exper-
imentally of five pooling functions on prediction. The analysis was
done for multiple instance learning framework on AED with weak
labeling, whose goal is to detect and localize events at the same time.
Their experiments were done on DCASE 2017 task 4 [24]: weakly
supervised AED for smart cars. This dataset employs a subset of
AudioSet [25], which includes 10-second clips containing 17 sound
events from two categories: “Warning” and “Vehicle”. Although
audio tagging, which is similar to our utterance-level classification
task, is covered in the experiments in [9], there are two fundamental
differences between this work and theirs. 1) Different characteris-
tics of events: Our work focuses on rare events, and we conducted
experiments on DCASE 2017 task 2 [24]: detection of rare sound
events. The averaged length of target events in the test set is shorter
than 2 seconds [26], and these events only occupy a very small por-
tion of the whole utterance (30 seconds). On the contrary, for events
in DCASE 2017 task 4 (e.g. “Ambulance (siren)”, “Car passing by”,
“Train”, etc.), the sound may cover the whole 10-second clip. 2) Dif-
ferent focuses of analysis: In [9], the analysis focuses on the effect
of pooling functions on both event localization and classification for
weak labeling. Due to the requirement of event localization, only
pooling functions on prediction were discussed in [9]. Our work
analyzes the effect of pooling functions on LSTM based AEC mod-
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Table 1: Pooling methods on feature.

Pooling method Function
Last frame h = hT

Attention h =
∑

t atht

Max pooling h[n] = maxt ht[n]
Average pooling h = 1

T

∑
t ht

Table 2: Pooling methods on prediction.

Pooling method Function
Max pooling y = maxt yt
Average pooling y = 1

T

∑
t yt

Linear softmax y =
∑

t yt
2∑

t yt

Exponential softmax y =
∑

t yt exp (yt)∑
t exp (yt)

Attention y =
∑

t ytwt∑
t wt

els focusing on utterance-level classification. Experiments are de-
signed for understanding the memory dynamics for LSTM models,
and looking for solutions to mitigate the sensitivity to event posi-
tions. Moreover, we further discuss four pooling functions on the
feature side, which are not covered in [9].

In this paper, we investigate the dynamics of LSTM memory
on AEC tasks, including an analysis on LSTM memory retaining,
and a benchmarking for impacts of different pooling approaches on
LSTM memory dynamics and AEC accuracies, using 1.7M synthe-
sized clips (across 3 event types and 3 SNRs). We also show that
bi-directional LSTM can mitigate the sensitivity to event positions
for certain pooling methods.

2. POOLING FUNCTIONS FOR LSTM MODELS

Denote an input utterance by X=[x1,...,xT ] where xi ∈ Rd con-
tains the audio features for the i-th frame. Since our task is to detect
whether the specific target event occurs in the utterance, a binary
label ŷ which indicates if an event occurs (ŷ = 1) or not (ŷ = 0) is
given for each utterance. Our goal is to make accurate predictions at
utterance-level for rare acoustic event classification.

Our model uses an LSTM model f , which may contain one or
multiple LSTM layers, to extract nonlinear features from X . This
gives a representation feature containing temporal information as:
f(X) = [h1, ...,hT ] ∈ RN×T . Given this feature f(X), differ-
ent pooling methods can be applied to generate the utterance-level
prediction y. We can categorize pooling methods into two types:
pooling on feature and pooling on prediction.

2.1. Pooling on feature

Given the feature f(X) generated by an LSTM model, we can ag-
gregate the frame-level features to generate the utterance-level fea-
ture h. The utterance-level feature is then fed into a dense layer with
sigmoid activation to generate the utterance-level prediction y. We
list the definition of four feature-level pooling functions in Table 1.

Using the feature of the last frame in the utterance (hT ) is the
simplest way to generate the utterance-level feature. Since LSTM
models have the ability to capture contextual information, we can
directly use the feature of the last frame to represent the whole utter-
ance. However, this naı̈ve method may suffer from long-term mem-
ory loss. Li et al. [27] showed that LSTM models could only mem-
orize less than 1,000 steps. Our experiments shown in Sec. 4.1 also
have demonstrated that this method has the forgetting issue on AEC.

The attention pooling function uses attention weights (at) to
combine frame-level features to form the utterance-level feature. We

(a) Babycry

(b) Glassbreak

(c) Gunshot
Fig. 2: Accuracies on the test set for LSTM models with different
pooling methods. Each bar represents an average of five trials, and
the error bar is the sample standard deviation of five trials. Note that
names starting with “Y.” are pooling methods on prediction, and the
rest are pooling on feature. The horizontal dashed line is the best
accuracy out of all setups.

use the same architecture as proposed in [8] to generate attention
weights. The weights for each frame (at) are learned with a dense
layer, whose weights are shared with the final dense layer generating
the utterance-level prediction. This design encourages the attention
to be peaked at frames containing target events, and be suppressed
at the non-event frames. In this work, there is no frame-level super-
vision for attention, which is slightly different from [8].

The max pooling function takes the largest value at each feature
channel across all time frames. Intuitively, it should work well for
rare event detection since the length of target event is short compared
to the utterance length. Once the model detects the event at certain
frames, these strong responses will be kept through max pooling
without suffering from the forgetting issue. Our experiments also
have shown that this is one of the best performing pooling methods.

The average pooling function simply assigns the same weight
( 1
T

) to all frames. This setup is not suitable for rare AEC since the
number of frames with events is small, which makes the utterance-
level feature difficult to represent the events.

2.2. Pooling on prediction

Given the feature xt generated by LSTM model at each frame t, we
can generate the frame-level prediction yt. These frame-level pre-
dictions Y = [y1, ..., yT ] are fed into a pooling layer to generate the
utterance-level prediction y. We list the definition of five prediction-
level pooling functions covered in [9] in Table 2. Max and average
pooling generate the utterance-level prediction by simply taking the



Fig. 3: Recall rate for methods of pooling on feature for ‘babycry’
abd ‘gunshot’. Mixtures used in this evaluation are generated by
placing event segments at different event positions. Rows from top
to bottom are mixtures with EBR of 6dB, 0dB respectively.

max and mean of frame-level predictions across all time frames.
The two softmax pooling functions are weighted sum of frame-

level predictions, where the weights for linear softmax is the frame-
level prediction itself (yt), and the weights for exponential softmax is
the exponential of frame-level prediction (exp (yt)). These softmax
pooling functions give the frames with high prediction values more
influence on the utterance-level prediction.

The attention pooling function uses attention weights (wt)
learned from a dedicated dense layer within the network, as pro-
posed in [9]. Note that the attention weights here (wt) are different
from the one used in attention pooling on feature (at). Unlike wt,
we don’t have an extra dense layer to generate the attention weights
for at, which is generated by sharing the weights with the dense
layer generating utterance prediction y as explained in [8].

3. EXPERIMENTAL SETUP

3.1. Dataset

We tested nine pooling methods on LSTM models using the dataset
provided by DCASE 2017 Challenge task 2 [24]: “Detection of
rare sound events.” The task data consist of three isolated target
events (baby crying, glass breaking, and gunshot) downloaded from
freesound.org, and 30-second background sound clips including fif-
teen different audio scenes (bus, cafe, home, library, etc.) from TUT
Acoustic Scenes 2016 dataset [28]. Rare events are relatively short
(averaged length shorter than 2 seconds in the test set) compared
with the background clips. A synthesizer provided by the challenge
organizer is used to generate mixtures of target events and back-
ground sound clips at random onset time. For each target event, we
generate 5,000 or 15,000 training samples with event-to-background
ratios (EBR) of -6, 0, 6dB. These EBRs are chosen to match the data
distribution of mixture clips provided in the dev/test sets. For each
generated training set, half of the utterances contain the target event,
and the other half don’t. For the development and test sets, there are
500 mixtures provided by the challenge organizer in each set, and
the ratio of containing event is 0.5 as well. The evaluation metric
we used for utterance-level binary classification is accuracy, and the
threshold is set to 0.5 to all models in this work.

The synthesized mixtures are 30-second monaural audio with
44,100 Hz and 24 bits. We use log filter bank energies (LFBEs) as
the acoustic features in this work. We decompose each mixture clip
into a sequence of 25 ms frames with a 10 ms shift. 64 dimensional
LFBEs are calculated for each frame, and we aggregate the LFBEs
from all frames to generate the input spectrogram (3,000×64).

3.2. Training Setup

We use models consist of one or two uni-directional LSTM layers,
followed by different pooling methods to generate the utterance-
level prediction. We set the number of units to 100 for all LSTM
layers. We use the loss of the development set as the criterion for
model selection. Adaptive momentum (ADAM) [29] is used as the
optimizer and the initial learning rate is set to 0.001. The size of
mini-batch is set to 200 for the training set of 5k samples, and 600
for the training set of 15k samples. One exception is that for atten-
tion pooling on feature, we set it to 500 for model with one LSTM
layer and 400 for model with two LSTM layers on the training set
of 15k samples due to the memory constraints on the GPU. We use
Keras with Tensorflow backend on Tesla K80 GPUs to conduct the
experiments.

3.3. Dataset for Testing Sensitivity to Event Positions

In order to check the sensitivity to event positions for different pool-
ing methods, we need a dataset containing mixtures with the target
event placed at different timestamps. We use the source data in the
test set to generate such mixtures. We first randomly selected 100
30-second background clips out of 387 clips from the test set. For
each event segment, we generate the mixtures by placing it at differ-
ent positions t ∈ [0, 1, ..., 29], and mix it with the background clip at
three EBR of -6, 0, 6dB. Depending on the length of event segment,
it may generate up to 30 mixtures for each pair of event segment and
background clip. In the test set, there are 61, 58, and 76 segments for
‘babycry’, ‘glassbreak’, and ‘gunshot’ respectively. We have gener-
ated roughly 1.76M 30-second mixtures ((61+58+76)×100×30×3)
for benchmarking the sensitivity of pooling methods to event posi-
tions. We use the recall rate on mixtures as the evaluation metric
since all mixtures are positive samples for the classification task.

4. EXPERIMENTAL RESULTS

For each type of event, we first experiment nine pooling methods on
two models (1 and 2 LSTM layers) and two sizes of the training set
(5k and 15k). The accuracies on the test set are shown in Fig. 2. For
architectures explored here with the best pooling (Y.MaxPooling),
we observed that neither increasing the number of mixtures in the
training set nor increasing the model complexity can further improve
the accuracy. This shows that models with a single LSTM layer have
enough model complexity for DCASE 2017 task 2 dataset. There-
fore, we conduct our further analysis of different pooling methods
on models with a single LSTM layer trained on the 5k dataset.

As shown in Fig. 2, max pooling on prediction outperforms other
eight pooling methods across three event types. If we take the av-
erage of accuracies (1Layer+train 5k) shown in Fig. 2 over three
types of events, we can find the top-4 pooling methods ranked as
following: 1) Y.MaxPooling (91.03%), 2) MaxPooling (90.11%),
3) Y.Attention (89.36%), 4) Y.LinSoftmax (89.07%). This result is
not consistent with the finding in [9], where max pooling on pre-
diction performs the worst for audio tagging. We hypothesize that



Fig. 4: Recall rate for methods of pooling on prediction for ‘babycry’
and ‘gunshot’. Mixtures used in this evaluation are generated by
placing event segments at different event positions. Rows from top
to down are mixtures with EBR of 0dB, -6dB respectively.

this inconsistency is due to the different characteristics between two
datasets, and more details are covered in Sec. 4.1.

4.1. Dynamics of LSTM Models on AEC

If the LSTM model is able to retain long-term memory over thou-
sands of steps, it should be able to detect the event no matter where
the event occurs within the 30-second utterance. We investigate the
dynamics of LSTM memory on AEC tasks by testing the models on
mixtures with event segments placed at different timestamps. For
each model, we evaluate the recall rate on mixtures with an event
segment placed at time t, and observe how the recall rate changes
with respect to t. Curves for pooling on feature methods (Fig. 3)
and pooling on prediction methods (Fig. 4) were calculated on 1.7M
mixtures synthesized with the setup described in Sec.3.3.
Memory retaining Li et al. [27] showed that LSTM can only keep a
mid-range memory (about 500-1,000 time steps). To check if LSTM
models have a similar memory forgetting issue on AEC, we can look
at the red curves of ‘LastFrame’ in Fig. 3. For ‘babycry’ and ‘gun-
shot’ events, we can see the recall rate goes up with the increase of
t, which shows that the LSTM model has higher chances to forget
events happened close to the beginning of utterance. This trend is
universal across different EBR settings. These results suggest that it
is essential to choose a pooling method for LSTM models suitable
for rare AEC.
Sensitivity to event positions From Fig. 3 and Fig. 4, we can tell
that the top 4 performing methods (Y.MaxPooling, MaxPooling,
Y.Attention, and Y.LinSoftmax) are not sensitive to event positions.
Overall, the recall rates do not change a lot in respect of t. Inter-
estingly, there is a huge drop in recall rate when ‘gunshot’ events
are placed at t = 0 for the top-4 methods. We suspect that it is
because of an issue of annotation for the onset time. Models learned
to identify ‘gunshot’ sounds by detecting the sharp change in the
amplitude of sounds. The onset time of some ‘gunshot’ events are
labeled after the actual onset time, which means that there is no huge
amplitude change in the event segment. When these segments get
placed at t = 0, models are not able to detect them correctly.

As the magenta curves shown in Fig. 4, the top performing pool-

(a) Uni(100 units) (b) Bi(50 units)

Fig. 5: We applied 5 pooling methods sensitive to event positions on
uni-directional (Uni) and bi-directional (Bi) LSTM models. Recall
rates are calculated on mixture clips of ‘babycry’ with 6dB SNR.

ing method for audio tagging (Y.AvgPooling) reported in [9] is very
sensitive to event position. If the event is placed at after half of
the mixture (t >= 15), the recall rate decreases quickly with re-
spect to t. This verifies our hypothesis that different characteristics
of datasets lead to findings inconsistent with [9]. In [9], the event
length is much longer than the rare events in our setup and it covers
a huge part of an utterance, which means the onset time of the event
is close to the beginning of the utterance. Y.AvgPooling works for
that case since sensitivity to event position is not an issue anymore,
and it can also avoid some noises brought by using max pooling. On
the contrary, Y.AvgPooling is not suitable for rare AEC due to that
the event length is short than 2 seconds, and the sensitivity to event
position matters a lot.
Mitigation of sensitivity After observing the sensitivity to event po-
sitions for certain pooling methods, we are looking for a solution to
mitigate this effect. A straight forward idea is to apply these pooling
methods to a bi-directional LSTM model. We have trained a set of
bi-directional LSTM models with 50 units in each direction. This
setup generates feature maps with 100 units at each frame, which
is the same as the default model (100 units uni-directional LSTM
model). For each pooling method, we trained 5 models to reduce the
randomness during the training. We tested these models on mixture
clips of ‘babycry’ event with 6dB SNR and the recall rates are shown
in Fig. 5. As shown in Fig. 5b, the sensitivity to event positions is
reduced significantly by using bi-directional LSTM. Compared with
Fig. 5a, the worst recall rate of five trials has improved from 10% to
50% for Y.AvgPooling, from 10% to 35% for Attention, from 10%
to 25% for AvgPooling.

5. CONCLUSION

We have benchmarked nine different pooling methods for LSTM
AEC models on task 2 of the DCASE 2017 challenge, with 1.7M
mixtures generated to evaluate utterance-level classification accu-
racy and sensitivity to event positions. We found that max pool-
ing on the prediction level (Y.MaxPooling) is the best performing
method in terms of classification accuracy, and it is also robust to
event positions. This observation is different from the finding in [9],
where max pooling on prediction is the worst performing method in
audio tagging task. We hypothesize that this inconsistency is due
to the different characteristics between two datasets as discussed in
Sec. 4.1. We also explored using bi-directional LSTM models to mit-
igate the sensitivity issue for certain pooling methods. To authors’
best knowledge, this is the first work focusing on LSTM memory
dynamics for AEC tasks.
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