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ABSTRACT

Networks are useful representations of many systems with interact-

ing entities, such as social, biological and physical systems. Charac-

terizing the meso-scale organization, i.e. the community structure,

is an important problem in network science. Community detection

aims to partition the network into sets of nodes that are densely con-

nected internally but sparsely connected to other dense sets of nodes.

Current work on community detection mostly focuses on static net-

works. However, many real world networks are dynamic, i.e. their

structure and properties change with time, requiring methods for

dynamic community detection. In this paper, we propose a new

stochastic block model (SBM) for modeling the evolution of com-

munity membership. Unlike existing SBMs, the proposed model

allows each community to evolve at a different rate. This new model

is used to derive a maximum a posteriori estimator for community

detection, which can be written as a constrained spectral clustering

problem. In particular, the transition probabilities for each commu-

nity modify the graph adjacency matrix at each time point. This

formulation provides a relationship between statistical network in-

ference and spectral clustering for dynamic networks. The proposed

method is evaluated on both simulated and real dynamic networks.

Index Terms— Community Detection, Dynamic Networks,

Stochastic Block Model, Spectral Clustering

1. INTRODUCTION

Community detection (CD) partitions the nodes of a network such

that nodes are densely connected within their respective communi-

ties while being sparsely connected across communities [1]. CD has

important applications in recommendation systems [2], social net-

works [3] and brain connectomics [4]. Recently, CD methods have

been developed for networks that change with time, i.e. dynamic net-

works [5]. Compared to static networks, CD methods for dynamic

networks aim to partition nodes at each time as well as to track the

changes in the partitions over time [6].

CD in static networks is commonly formulated as the optimiza-

tion of a quality function. Some of the well-known quality functions

are modularity [7], normalized and ratio cuts [8], InfoMap [9] and

likelihood or posterior distributions defined based on statistical in-

ference [10, 11]. These functions can be divided into two categories

[12]. The first category includes functions that are defined heuristi-

cally such as modularity or cut based methods. Functions in the sec-

ond category are based on statistical network models, e.g. stochastic

block model (SBM) and degree-corrected SBM (DCSBM), and like-

lihood or posterior distributions are defined as quality functions.

Dynamic CD methods are mostly based on extensions of afore-

mentioned quality functions from the static to the dynamic case.

The early work in dynamic CD named evolutionary spectral clus-

tering (EvoSC) [13], defines a quality function at each time point as
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αCS + βCT where CS is snapshot cost, CT is temporal cost and

α, β are parameters that weigh the two terms. This formulation can

be thought of as constraining the snapshot cost of a time point with

community structure of previous time points. Similarly, modularity

optimization [14, 12], statistical methods [15, 16, 17] and InfoMap

[18] have been extended to dynamic networks.

Recently, there have been attempts to show that heuristic based

optimization methods are equivalent to statistical inference under

some conditions. Newman et al. [19] showed that spectral ap-

proximation of modularity, normalized cut and statistical inference

are equivalent to each other for a particular choice of parameters.

Similarly, equivalence between spectral clustering, modularity max-

imization and non-negative matrix factorization is shown in [20].

Lastly, in [21] statistical inference is shown to be universal, which

means most of the quality functions developed for CD are indeed

special cases of statistical inference. This work is extended to dy-

namic networks in [12], where dynamic modularity function defined

in [14] is shown to be equivalent to statistical inference methods.

Following this line of work, we propose a method for dynamic

CD, referred to as constrained dynamic spectral clustering (CDSC).

We start by defining a dynamic DCSBM and the corresponding pos-

terior distribution. We then show that maximizing the posterior dis-

tribution can be solved by a dynamic spectral clustering algorithm.

The proposed work makes some significant contributions to the liter-

ature. First, the proposed dynamic DCSBM allows each community

to evolve with a different probability that varies with time. Sec-

ond, we derive a relationship between statistical inference based on

the proposed dynamic DCSBM and spectral clustering, in particular

constrained spectral clustering. Finally, we show that the proposed

method is a generalization of EvoSC.

The remainder of the paper is organized as follows. In Section 2,

we give an overview of the notations used in the paper along with a

background on spectral clustering and DCSBM. In Section 3, we in-

troduce our new dynamic DCSBM and the corresponding optimiza-

tion problem. In Section 4, the comparison of the proposed method

with state-of-the-art dynamic CD methods on both simulated and a

real dynamic network is given.

2. BACKGROUND

2.1. Notation

A static graph is represented by G = (V,E) where V is the node

set with |V | = n and E ∈ V × V is the edge set with |E| = m. An

edge between two nodes i and j is indicated by eij . In this work, the

graphs are assumed to be undirected, i.e. eij = eji, and self loops

are not allowed, i.e. eii 6∈ E, ∀i ∈ V . Each edge eij is associated

with a weight wij . If wij ∈ {0, 1}, the graph is said to be binary,

on the other hand if w ∈ R≥0 then it is a weighted graph. Degree

of a node i is di =
∑

j
wij . A graph is algebraically represented by

an n× n adjacency matrix A whose entities are Aij = wij . Lastly,

Laplacian matrix of a graph is defined as L = D −A, where D is

a diagonal matrix with entries Dii = di.

http://arxiv.org/abs/1911.01475v1


A dynamic graph is a time sequence of static graphs, i.e. G =
{G1, G2, . . . , GT }, where Gts are defined on the same vertex set

V . The edge sets Ets define the set of interactions between nodes

at time t [5]. Mathematically, we represent G as a sequence of adja-

cency matrices A = {A1,A2, . . . ,AT }.

2.2. Spectral Clustering

CD on a graph G = (V,E) is the task of partitioning nodes in V into

K non-overlapping communities, i.e. P = {C1, . . . , CK} where

Ci ∩ Cj = ∅ ∀, i 6= j and
⋃K

i=1
Ci = V . This task is usually

achieved by optimizing a function that quantifies the quality of the

communities, Cis. Two widely used quality functions are graph cut

and graph association, which are defined as follows. Let g be the n
dimensional community assignment vector whose entries gi = k if

node i is in community k and Z ∈ {0, 1}n×K be the community

membership matrix, whose entries Zik = 1 if and only if gi = k.

The association and cut of the partition P are defined as [8]:

AssocG(Z) =
n∑

i<j

Aijδgigj =
1

2
Tr(ZT

AZ), (1)

CutG(Z) =

n∑

i<j

Aij(1− δgigj ) =
1

2
Tr(ZT

LZ). (2)

2.3. Degree Corrected SBM (DCSBM)

SBM was first proposed in social sciences as a random network

model with community structure, where each node belongs to a com-

munity and edges between nodes are drawn independently based on

their community membership [22, 23]. The model is parameterized

with community assignment vector g and an edge probability matrix

θ ∈ [0, 1]K×K where θkl is the probability of an edge between the

kth and lth communities and K is the number of communities. The

edge between nodes i and j is drawn from a Bernoulli distribution

with probability θgigj . SBM has been used for inferring communi-

ties by maximizing the likelihood function of the observed network

with respect to g [10].

In [11], it is observed that network inference with SBM can re-

sult in erroneous community assignments when the degrees of the

nodes are not uniformly distributed. In order to overcome this prob-

lem, degree-corrected SBM (DCSBM), in which degrees of nodes

are used in determining the probability of edge formation, has been

proposed. This is done by assuming that the edge between nodes i
and j comes from a Poisson distribution with mean λij = didjθgigj .

DCSBM leads to the following likelihood function, which can be

maximized with respect to g to find community structure:

P(A|g; θ) =
n∏

i<j

(λij)
Aije−λij

Aij !
. (3)

3. METHOD

3.1. Dynamic DCSBM

Recently, DCSBM has been extended to dynamic networks in [17,

12, 24], where the network at each time is a DCSBM and community

assignment of any node i at time t is modelled to be the same as the

community assignment at time t − 1 with a copying probability of

qt. We base our dynamic DCSBM on this prior work but with a dif-

ferent assumption about network dynamics. Let g = {g1, . . . , gT }
and θ = {θ1, . . . ,θT } be sequences of community assignment vec-

tors and edge probability matrices at each time point for a dynamic

network G, respectively. Moreover, we assume that there are K

communities at each time. Different from previous work, we de-

fine a sequence of copying probabilities, q = {q2, . . . , qT }, where

the kth entry of qt ∈ [0, 1]K , qtk, is the probability of a node at

time t − 1 staying in the kth community. Thus, our model allows

each community to have its own copying probability qtk . This is

a reasonable assumption since each community may have its own

evolutionary dynamics, such that some communities may grow with

time while others may stay stationary across time [6]. Next, com-

munity assignments of nodes are modelled as follows. If gt−1

i = k,

then we assume gti = k with probability qtk , otherwise gti is equal

to one of the K communities with uniform probability. Based on

this, P(gti = l|gt−1

i = k) = πt
il where πt

il = qtk +
1−qtk
K

if k = l

and πt
il =

1−qtk
K

otherwise. Finally, the community transition prob-

abilities are assumed to be independent across nodes. Therefore, the

prior distribution P(g) is:

P(g; q) = P(g1)

T∏

t=2

P(gt|gt−1) =

n∏

i=1

P(g1i )

T∏

t=2

n∏

i=1

πt
igt

i
, (4)

where P (g1i ) is the prior probability of community assignment of

node i at t = 1 and it is assumed to be uniformly distributed, i.e.

P (g1i = k) = 1/K ,∀k = 1, . . . ,K .

3.2. Dynamic community detection

In this section, we show how maximizing the posterior distribution

of dynamic DCSBM can be transformed into a trace maximization

problem, which can be solved using spectral clustering algorithms.

Using Eqs. 3 and 4, the posterior distribution of a dynamic network

G following dynamic DCSBM is written as:

P(A, g; θ, q)=
T∏

t=1

n∏

i<j

(λt
ij)

At
ije−λ

t
ij

At
ij !

n∏

i=1

1

K

T∏

t=2

n∏

i=1

πt
igt

i
, (5)

where λt
ij = dtid

t
jθ

t
gt
i
gt
j

and dti is the degree of node i at time t.

Let Ł(g) = log P(A, g; θ, q), which can be written as follows by

ignoring the terms that do not depend on g:

Ł(g)=
T∑

t=1

n∑

i<j

[At
ij log(θ

t
gt
i
gt
j
)−dtid

t
jθ

t
gt
i
gt
j
] +

T∑

t=2

n∑

i=1

log(πt
igt

i
), (6)

where the first and second terms are the log-likelihood and log-

prior, respectively. First, consider the log-prior term in (6). For

fixed nodes i and j, and fixed t, let gti = k and gtj = l where

k, l ∈ {1, . . . ,K}. Then, the sum of log-priors of nodes i and j at

time t is log(πt
ik) + log(πt

il) = log(πt
ikπ

t
il). Due to independence,

πt
ikπ

t
il is the joint probability of nodes i and j being in communities

k and l at time t, respectively. As community labels are arbitrary,

it is more meaningful to quantify the joint probability of any two

nodes being in the same community rather than the probability of

individual nodes being in a particular community. Therefore, the

joint probability πt
ikπ

t
jl considered to be one of two values, namely

when i and j are in the same community or in different communities:

πt
ikπ

t
jl =

{
ptij/K, k = l,

(1− ptij)/(K(K − 1)), k 6= l,

where ptij is the probability of nodes i and j being in the same

community at time t and the denominators are the normalization

terms. Note that, ptij can also be calculated as
∑K

k=1
πt
ikπ

t
jk .

Then, log(πt
ikπ

t
jl) = log(ptij/K)δkl + log((1 − ptij)/(K(K −

1)))(1 − δkl). This expression corresponds to the log-prior for a



fixed node pair (i, j) at time t. In order to write the log-prior term

as a quadratic expression similar to spectral clustering, we add up

the terms log(πt
igt

i
) for a fixed time t as many times as necessary

to generate terms for all node pairs (for i < j, we only need pairs

in the form of (i, j)). This implies that we need (n − 1) number

of log-prior terms for each node in (6) for a fixed time t. Thus, the

second term of (6) at time t can be written by ignoring the terms that

do not depend on g:

n−1

n−1

∑

i

log(πt
igt

i
)=

n∑

i<j

[
log(ptij)

n−1
δgt

i
gt
j
+
log(1−ptij)

n−1
(1−δgt

i
gt
j
)

]
.

(7)

Next, we consider the log-likelihood term in (6). At time t, we as-

sume θt to be a planted partition model, i.e., θtkl = θtiδkl + θto(1−
δkl) = (θti−θ

t
o)δkl+θo, where θi is the intra-community connection

probability and θo is the inter-community connection probability. In-

serting this into the log-likelihood by ignoring the terms that do not

depend on g:
∑

i<j

{At
ij(log(θ

t
i)− log(θto))− dtid

t
j(θ

t
i − θto)}δgt

i
gt
j
,

=
∑

i<j

βtAt
ijδgt

i
gt
j
− γtdtid

t
jδgt

i
gt
j
, (8)

where γt = θti − θto and βt = log(θti) − log(θto). It is easy to

see that (7) and (8) are now similar to (1) and (2), thus they can be

written using a trace operator. Defining two matrices Pt and Qt ∀t
with entries P t

ij = P t
ji = log(ptij) and Qt

ij = Qt
ji = log(1−ptij),

respectively, the log-posterior can be written as:

Ł(Z) =

T∑

t=1

βtTr(ZtT
AZ

t)− γtTr(ZtT
D

t
Z

t
Z

tT
D

t
Z

t)

+
T∑

t=2

1

n− 1
Tr(ZtT (P+ LQ)Z

t),

(9)

where LQ = DQ − Q and DQ is a diagonal matrix with entries

DQii =
∑n

j=1
Qij .

3.3. Constrained Dynamic Spectral Clustering

Maximizing (9) with respect to Z reveals the community structure

of the dynamic network G. As in spectral clustering, this problem is

NP-hard since Z is a binary matrix. Therefore, we relax Z to take on

any real value while imposing size constraints ZtTDtZt = I, ∀t.
Due to the constraint, the second term in (9) becomes a constant,

thus can be ignored during optimization. Thus, CD in a dynamic

network G can be written as the following optimization problem:

Z
∗ =argmax

Z

T∑

t=1

βtTr(ZtT
A

t
Z

t)+
T∑

t=2

Tr(ZtT (Pt+Lt
Q)Zt)

n−1

subject to Z
tT

D
t
Z

t = I, ∀t. (10)

This optimization problem is similar to EvoSC, where at each time

point the first and second terms correspond to the snapshot and tem-

poral costs, respectively. However, unlike EvoSC, our objective

function is based on normalized association and the temporal cost

is a generalized version of temporal cost used in preserving clus-

ter membership (PCM) [13]. This is a generalization as we include

copying probabilities into calculation of distance, whereas in PCM

each community is assumed to evolve at the same rate.

Algorithm 1 Constrained Dynamic Spectral Clustering

Input: Dynamic network G = (G1, . . . , GT ), Number of commu-

nities K1, . . . ,KT

Output: Community Structure P ∗

1: for t=1 to T do

2: if t is equal to 1 then

3: Zt ← Spectral clustering of At with Kt by (1).

4: else

5: Find parameters qt and βt as in Section 3.4

6: Πt ← diag(qt) + 1

Kt (1− qt)1T

7: Pt ← Zt−1 log(ΠtΠtT )Zt−1T

8: Qt ← Zt−1 log(1−ΠtΠtT )Zt−1T

9: LQ ← DQ −Q

10: Â
t
← βtAt + 1

n+1
(P+ LQ)

11: Zt ← Spectral clustering of Â
t

with Kt by (1).

12: end if

13: end for

The problem in (10) can be solved via spectral clustering in

an iterative fashion as follows. First, communities at t = 1
can be obtained by static spectral clustering. Next, at any time

t > 1 a K × K matrix Πt = diag(qt) + 1

K
(1 − qt)1T is

constructed where diag(·) is an operator that transforms a vector

into a diagonal matrix and 1 is a K-dimensional vector of ones.

From Πt and Zt−1, we calculate Pt = Zt−1 log(ΠtΠtT )Zt−1T

and Qt = Zt−1 log(1−ΠtΠtT )Zt−1T where logarithm is taken

element-wise. Finally, spectral clustering is applied to the matrix

βtAt +
Pt

+Lt
Q

n−1 with the constraint ZtTDtZt = I . Since CD is

performed individually at each time point , the number of commu-

nities can be different at each time. Pseudo-code for the proposed

approach is given in Algorithm 1.

3.4. Parameter Estimation

The proposed method requires the estimation of copying probabil-

ities q and parameter βt. These parameters are estimated in an it-

erative fashion similar to [12]. In particular, at each time qt and

βt are randomly initialized with qt
0 and βt

0 and community struc-

ture is found as in Algorithm 1. Next, the community structure

Zt is compared to Zt−1 to update copying probabilities qt. Zt

and At are also used to compute θti and θto as in [11] and βt =
log(θti)− log(θto). Lastly, Zt is updated by finding the community

structure at time t with the updated parameter values. This process is

repeated iteratively N times or till convergence. In our experiments,

it was observed that copying probabilities and βt do not change after

a couple of iterations.

4. RESULTS

4.1. Results for Simulated Networks

The performance of the proposed method is first evaluated on simu-

lated networks and compared to state-of-the-art dynamic CD meth-

ods including PCM [13], DSBM [16] and GenLouvain [12]. First,

we generate simulated networks based on Girvan-Newman (GN)

benchmark networks [25]. At time point t = 1, a GN network with

128 nodes divided into 4 equal sized communities is generated. For

1 < t ≤ T , community assignments of each node is first determined

by the copying probability qt = q ∈ [0, 1]4, that is a node in the

kth community at time t − 1 stays in the kth community at time

t with probability qk, otherwise it is randomly assigned to one of



the 4 communities. For all time points, average degree and mixing

coefficients are set to 16 and µ, respectively. Mixing coefficient µ
indicates how noisy the community structure of the network is. The

larger the µ is, the harder it is to detect the community structure.

Comparison is done by calculating the normalized mutual informa-

tion (NMI) [26] for each method averaged over time and 50 Monte

Carlo simulations.

In Fig. 1a, the results for GN benchmark can be seen for q =
[0.9, 0.6, 0.9, 0.6], T=10 and 3 different values of µ. For PCM, the

parameter α is set to 1 and β is selected empirically between 0.1
and 0.3 as the one that gives the best normalized association value.

Initial values of the parameters for GenLouvain and DSBM are set

in a similar fashion as in the original papers [12, 16]. Finally, for

all of the methods the number of communities are assumed to be

known. For µ = 0.40, all algorithms yield high average NMI values

as shown in Fig. 1a, while the smallest variance in NMI is achieved

by CDSC and PCM. As µ increases, the performance of all methods

degrades. However, GenLouvain degrades faster than the others as

seen in results for µ = 0.50, where the best result is achieved by

CDSC both in terms of average NMI and variance across simula-

tions. Finally, as CDSC is a generalized version of PCM, it always

provides better accuracy than PCM (difference when µ = 0.5 is

statistically significant at α = 0.001). The results indicate that in-

corporating copying probabilities that are dependent on community

membership in DCSBM improves performance.

The results given above indicate that CDSC provides higher

accuracy than existing methods for GN networks. However, GN

benchmark model is too simplistic in the way it generates the

network as it does not account for heterogeneity in degrees and

inter-community edge probabilities. For this reason, we evaluate

the proposed method on a more complex benchmark proposed in

[24], referred as Multilayer Generative Model (MLGM) bechmark.

This benchmark is generated using a dynamic DCSBM similar to

the one mentioned in Section 3.1 and introduces heterogeneity in

the degrees of nodes, community sizes, inter-community edge prob-

abilities. Moreover, we modified the benchmark such that each

community can have different copying probabilities. The num-

ber of nodes is set to 128, T = 10 and copying probabilities are

qt = [0.9, 0.6, 0.9, 0.6] for all t. At each time there are 4 com-

munities with different sizes and degrees of nodes are drawn from

a power law distribution truncated between 8 and 16. Results are

shown for four different values of µ in Fig. 1b. For small values

of µ, all methods have similar NMI values. As µ increases, the

proposed method performs the best giving the highest average NMI

(difference between PCM and CDSC when µ = 0.55 and µ = 0.6
are statistically significant at α = 0.001).

0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

(a)

0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

(b)

Fig. 1. Average NMI values for the different methods as a function

of mixing parameter µ: (a) GN benchmark networks and (b) MLGM

benchmark networks.

4.2. Results for Primary School Temporal Networks (PSTN):

The proposed method is applied to a real dynamic social network

that depicts the connectivity between students and teachers in a pri-

mary school. The data is collected in October 2009 for one day using

wearable sensors that measure face-to-face proximity. Temporal res-

olution of the data is 20 seconds, and there are 232 students and 10

teachers. The school is in session between 8:30 a.m. and 4:30 p.m.

with two 20-25 minutes breaks at 10:30 a.m. and 3:30 p.m. and

lunch time between 12:00 p.m. to 2:00 p.m. [27]. The raw data are

divided into 13 minute intervals and a binary network is generated

for each interval by connecting two individuals if they interact in the

given time interval. The resulting dynamic network has T = 40 time

points and 242 nodes.

The proposed method is applied to the constructed network

where the number of communities at each time is selected as the

number that maximizes asymptotic surprise [28]. In Fig. 2a, the

community structure of a time interval (between 2.15 p.m.and 2.30

p.m.) when students are in classes is shown as an example to in-

dicate the effectiveness of the proposed method in detecting the

communities. Fig 2b shows the similarity between the community

structures at consecutive time points, where the similarity is quan-

tified by the weighted average of copying probabilities. It can be

seen that the similarity is high for most times except during breaks

and lunch time. These results agree with our intuition since students

from different classes interact with each other during breaks and

lunch time resulting in a change in the community structure. Fig.

2b also illustrates that the proposed parameter estimation method

described in Section 3.4 gives meaningful results.

5. CONCLUSIONS

In this work, a new algorithm for dynamic CD is introduced based

on the equivalence between statistical network inference and spec-

tral clustering. We first introduced a novel dynamic DCSBM that ac-

counts for the differences in the evolutionary dynamics of different

communities. We then proved the equivalency between statistical in-

ference under this model and constrained spectral clustering for the

planted partition model. Our derivation extends previous works that

relate statistical inference and heuristic quality function optimiza-

tion to dynamic networks. Moreover, the proposed method has been

shown to be a generalization of PCM framework in EvoSC. Future

work will exploit this relationship to analyze the consistency and

scalability of the proposed algorithm and parameter estimation.

1A

1B

2A

2B

3A

3B

4A

4B

5A

5B

Teachers

(a) (b)

Fig. 2. (a) Detected communities for primary school data when

the students are in classes. White rectangles correspond to differ-

ent classes with the last rectangle corresponding to the teachers; (b)

Similarity of community structures between consecutive time points,

where red regions correspond to the two breaks and the green one to

lunch time.
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