
 

 

This research work is financially supported by the MediaTek Inc., 
Hsin-chu, Taiwan, under Grants MTKC-2019-0070. 

LOW-COMPLEXITY LSTM-ASSISTED BIT-FLIPPING ALGORITHM FOR 

SUCCESSIVE CANCELLATION LIST POLAR DECODER  

 

Chun-Hsiang Chen, Chieh-Fang Teng, and An-Yeu (Andy) Wu 

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 106, Taiwan. 

{johnny, jeff}@access.ee.ntu.edu.tw, andywu@ntu.edu.tw 

 

 

ABSTRACT 

 

Polar codes have attracted much attention in the past 

decade due to their capacity-achieving performance. The 

higher decoding capacity is required for 5G and beyond 5G 

(B5G). Although the cyclic redundancy check (CRC)- 

assisted successive cancellation list bit-flipping (CA-SCLF) 

decoders have been developed to obtain a better 

performance, the solution to error bit correction (bit-

flipping) problem is still imperfect and hard to design.  In 

this work, we leverage the expert knowledge in 

communication systems and adopt deep learning (DL) 

technique to obtain the better solution. A low-complexity 

long short-term memory network (LSTM)-assisted CA-

SCLF decoder is proposed to further improve the 

performance of conventional CA-SCLF and avoid 

complexity and memory overhead. Our test results show 

that we can effectively improve the BLER performance by 

0.11dB compared to prior work and reduce the complexity 

and memory overhead by over 30% of the network. 

Index Terms—Polar codes, successive cancellation list, 

bit flipping, long short-term memory network 

 

1. INTRODUCTION 

 

Polar codes, since proposed by Arikan in 2009, have 

attracted lots of attention from both academia and industry 

due to their capacity-achieving performance [1].  Further, in 

2016, polar codes have been adopted as the official channel 

coding scheme for enhanced mobile broadband (eMBB) 

uplink and downlink control channels [2].  

 Recently, as deep learning (DL) has many revolutionary 

breakthroughs in the field of computer vision and natural 

language processing, many researchers have also been  

dedicated to applying this powerful technique to enhance 

decoding algorithms [3]-[7]. However, their decoding 

capacity is still worse than the state-of-the-art CRC-assisted 

successive cancellation list (CA-SCL) [8]-[10]. Although 

CA-SCL benefits from the list structure and CRC, it still 

suffers from large storage overhead and computational 

complexity. As the result, bit-flipping decoding was 

adopted in CA-SCLF to release hardware complexity with 

the flexible tradeoff between the decoding performance and 

latency as shown in Fig. 1(a) [11]-[13].  

 To further improve decoding capacity and reduce the 

decoding latency, the flipping trials of error bits in CA-

SCLF, we take advantage of DL to enhance the error path 

prediction accuracy. Besides, to avoid the severely 

increased memory overhead and additional computations 

from DL model, we apply our domain knowledge in 

communication systems with carefully designed DL 

architecture. The proposed long short-term memory 

network (LSTM)-assisted CA-SCLF is shown in Fig. 1(b). 

The main contributions of our work are as follows: 

1) We apply LSTM to the CA-SCLF decoder, which can 
effectively extract the features from the sequential 
decoding process and enhance the error bit prediction. 
Therefore, the proposed design can improve the block 
error rate (BLER) performance and decoding latency 
by 0.11dB and 41.25%, respectively.   

2) By taking advantage of domain knowledge for input 

data preprocessing and output dimension reduction, 

we can significantly reduce the memory requirements 

and computational complexity by over 30%, making 

our design more feasible for hardware implementation. 

 The rest of this paper is organized as follows. Section 2 

briefly reviews the concept of polar codes, CA-SCLF, and 

the prior work. Section 3 illustrates the proposed 

architecture of LSTM-assisted CA-SCLF with novel input 

data preprocessing and output design. The numerical 

experiments and analyses are shown in Section 4. Finally, 

Section 5 concludes our work.  

 
Fig. 1. Overview of (a) the conventional CA-SCLF design [13], and (b) 

the proposed low-complexity LSTM-assisted CA-SCLF. 

 



 

 

2. PRELIMINARIES 

 

2.1. Polar Codes   

In this paper, we use 𝒖𝑗
𝑖, with 𝑗 < 𝑖, to denote the vector 

{𝑢𝑗 , 𝑢𝑗+1, … , 𝑢𝑖}. To construct an (𝑁, 𝐾) polar codes, the 

mathematical foundations lay on the polarization effect of 

the 2 × 2 transformation matrix 𝑭 = [
1 0
1 1

]. 𝑁 virtual bit-

channels are constructed from recursive polarizing 

transformation by log2 𝑁 times. As 𝑁 approaches infinity, 

the channels separate into the noisy channels (unreliable) 

and noiseless channels (reliable). According to the 

reliabilities of each channel, the 𝐾  information bits are 

assigned to the 𝐾  most reliable channels in the 𝑁 -bit 

message 𝒖1
𝑁 and the remaining (𝑁 − 𝐾) bits are taken as 

frozen bits with the assignment of zeros. The set of 

information bit indices is denoted by 𝐴. Then, the 𝑁-bit 

transmitted codeword 𝒙1
𝑁 is calculated by multiplying 𝒖1

𝑁 

with generator matrix 𝑮𝑁 as follows: 

1 1 1 2, logN N N n

N N n N  Gx u u F B , (1) 

where 𝑭⊗𝑛  is the 𝑛 -th Kronecker power of 𝑭 , and 𝑩𝑁 

represents the bit-reversal permutation matrix. 

 In past years, there are several decoding algorithms 

developed to meet various scenarios, such as belief 

propagation (BP), CRC-assisted successive cancellation bit 

flip (CA-SCF) [11], and CA-SCL. BP iteratively decodes 

the message over the corresponding factor graphs. On the 

other hand, both CA-SCF and CA-SCL decode the message 

based on SC but with the different mechanisms to correct 

the error decoding bits.  

 

2.2. Prior Work: CA-SCLF Decoding [12]-[13] 

CA-SCLF decoder is recently developed due to its high 

performance and flexibility. The decoding process of CA-

SCLF is shown in Fig. 2. is described as the following. 

Firstly, given the received signal 𝐲, the CA-SCL algorithm 

with determined list size 𝐿 is implemented. The concept of 

CA-SCL is to reserve the 𝐿 most reliable paths (red lines) 

from 2𝐿  temporary paths through the path metric (PM) 

values 𝑃𝑀𝑙
𝑖 , where 𝑙  and 𝑖  denote the index of 2𝐿 

temporary paths and the bit index. The path metric is 

defined as 
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where 𝑢̂𝑗[𝑙] and 𝐿(𝑗)[𝑙] denote the 𝑗-th decoding bit at 𝑙-th 

path and the decoding LLR of bit 𝑢̂𝑗[𝑙]  given 𝒚  and 

decoding trajectory 𝒖̂1
𝑗−1[𝑙], respectively. Without loss of 

generality, we assume that the 2𝐿 temporary paths satisfy 

𝑃𝑀1
𝑖 < 𝑃𝑀2

𝑖 < ⋯ < 𝑃𝑀2𝐿
𝑖 . Besides, 𝑙′ and 𝑙′+𝐿 stand for 

the reserved paths (first 𝐿 paths) and discarded paths (last 

𝐿 paths), respectively. 

 Secondly, CA-SCLF attempts to correct the first error 

path selection, where the correct path (orange arrow line) 

is not among the reserved paths (red lines). In Fig. 2., the 

first error happens at 𝑢̂6. As the result, there will be a set 

for bit flipping (BFS). In [13], the BFS is based on the self-

defined error metric 𝑀(𝑖): 
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 Next, we retry CA-SCL from the discarded paths (blue 

lines) by following the bit-flipping order. We should note 

that there is only one bit flipped for every trial. The 

decoding continues until the CRC passes or the trial 

number has reached the maximum number 𝑇𝑚𝑎𝑥 . 

We can observe that the error metric from (3) only 

contains the information from discarded paths. It results in 

information loss from the reserved paths, which will 

degrade the performance. In our work, we look into the 

information from both the reserved paths and discards paths. 

Also, we are the first to utilize LSTM for CA-SCLF.  

 

3. PROPOSED LOW COMPLEXITY LSTM 

ASSISTED CA-SCLF POLAR DEOCDER 

 

3.1. Proposed Feature Extraction for Neural Network 

From the original implementation of CA-SCL in the first 

step of CA-SCLF decoding, we can receive the LLRs and 

PM values for each decoding bit. However, if we set the 

whole LLRs or PM values as the neural network inputs, the 

cost of memory and complexity will be unaffordable. As we 

know, the path metric represents the probability of each 

decoding path given 𝒚. As the result, we propose the novel 

error metric based on PM and be able to represent the error 

path selection probability. The formula takes the ratio of 

the discarded paths and reserved paths without any 

information loss and is written as 
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Fig. 2. Decoding procedure of CA-SCLF with (𝑁, 𝐾) = (8, 4). 

 



 

 

3.2. Proposed Low Complexity Feature Extraction for 

Neural Network 

The exponential and division operation in Eq. (4) leads to 

high complexity which will limit the benefit. As the result, 

we modify the formula in the following. Firstly, we replace 

exponential function by the addition, and we will get 
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(5) 

Eq. (5) derives from the Tylor series approximation. Next, 

we can take the logarithm operation from Eq. (5) since the 

logarithm operation causes no information loss and then 

approximate the logarithm function with the linear function. 

Therefore, we have    
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(6) 

(7) 

Finally, we multiply Eq.(7) by – 𝐿 for simplicity, and there 

is no information loss. Hence, we will get  
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From Eq. (8), we can see that the equation is rewritten in a 

hardware-friendly form. 

 

3.3. Proposed Low Complexity LSTM Model for CA-

SCLF Design 

According to the sequential decoding process and long 
code length, the LSTM model is used in this work. The 
LSTM model is composed of a cell, an input gate, an output 
gate, and a forget gate as shown in Fig. 3(a).  

 Firstly, we calculate the modified error metrics of the 
last 𝐾 − log2(𝐿) information bits from Eq. (8) to be the 
serial network inputs instead of the path metrics. As for the 
outputs, the fully connected network with softmax as its 

activation function is connected with the LSTM. We take 
the concept of critical set (CS) for the outputs in our work. 
The CS consists of the bits which can be taken as the first 
bit in every sub-block of polar codes with code rate equal to 
1. These bits are proven to have higher error rate [11]. As 
the result, we propose to use one-hot vector with the length 
𝑆  whose first 𝑆 − 1  bits represent the information bit 
indices in CS, excluding the first log2(𝐿) information bit 
indices, and the last bit represents the other information bit 
indices not in critical set (NCS) as shown in Fig. 3(b). 
Relying on the specific design of inputs and outputs, the 
complexity and memory can be extremely reduced. The loss 
function is cross-entropy between neural network output 𝒐 
and true label 𝒐, which is written as 

The decoding procedure is shown in Algorithm 1. 
 

4. SIMULATION RESULTS 
 

The simulation setup is summarized in Table I. 

Algorithm 1: Proposed LSTM-Assisted CA-SCLF Decoding  
───────────────────────── 

 Input: 𝒚, 𝐿, 𝑇𝑚𝑎𝑥, 𝐴 

 Output: 𝒖̂𝟏
𝑵 

 Computation 

for 𝑖 = 1, 2, … , 𝑁 do 

 Do the conventional CA-SCL  

{𝑢̂1
𝑁, 𝑃𝑀𝑙

𝑖 , 𝑃𝑀𝑙+𝐿
𝑖 } ← 𝐶𝐴 − 𝑆𝐶𝐿(∅) 

  Calculate 𝑀̂(𝑖) by Eq. (8) 

end 

if CRC(𝑢̂1
𝑁) = success then 

 Return 𝑢̂1
𝑁 

else 

 Build the bit-flipping set (BFS) ← LSTM with input 𝑀̂(𝑖) 

end 

for  𝑇 = 1, 2, … , 𝑇𝑚𝑎𝑥 do 

 Bit-flipping index 𝑢𝑖 ←BFS(T) 

 Redo the CA-SCL from the discarded paths at 𝑢𝑖 

{𝑢̂1
𝑁, ~, ~} ← 𝐶𝐴 − 𝑆𝐶𝐿(𝑖) 

  if CRC(𝑢̂1
𝑁) = success then 

  Return 𝑢̂1
𝑁 and break 

end 

end 
────────────────────────────── 
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Fig. 3. Our proposed LSTM network is composed of the (a) LSTM unit and 
(b) fully connected layer with (𝑁, 𝐾) = (8, 4) and 𝐿 = 2. 

TABLE I. SIMULATION PARAMETERS 

Encoding 
Polar code (512,256),  

CRC = 24, 𝑆 = 62 

EbN0 (dB) 0, 0.5, 1, 1.5, 2 

Training/Validation 

data size 
500,000/100,000 

Mini-batch size 200 

Optimizer Adam 

Simulation 

Environment 

DL library of MATLAB with 

NVIDIA RTX 2080 GPU 

 



 

 

4.1. Performance of Proposed LSTM Design for CA-

SCLF 

In first experiment, we examine the block error rate (BLER) 

performance of the proposed LSTM design with 

preprocessing (WP) named as WP-LSTM. Similar to the 

output design of WP-LSTM with the path metrics taken as 

inputs, we also simulate for the performance of LSTM 

without preprocessing (NP) named as NP-LSTM. The 

proposed design is compared with the prior work [13], and 

the simulation results are shown in Fig. 4. Except for CA-

SCL, all the others are implemented with 𝐿 = 8. T and H 

denote the 𝑇𝑚𝑎𝑥  and hidden layer size in the figure, 

respectively. 

 Firstly, we can observe that WP-LSTM with 𝑇𝑚𝑎𝑥 =
10 can outperform the CA-SCL decoder with 𝐿 = 16 by 

0.06dB and 0.13dB with 𝑇𝑚𝑎𝑥 = 20. Also, WP-LSTM has 

0.11dB better performance than [13] when 𝑇𝑚𝑎𝑥 = 20 . 

Secondly, we compare WP-LSTM with NP-LSTM with the 

same hidden layer size 500 and 𝑇𝑚𝑎𝑥 = 20. The results 

show that WP-LSTM can achieve 0.018dB better 

performance, which tells the truth that the domain 

knowledge cannot only reduce the complexity and memory 

overhead but also help to improve the performance under 

limited resources. Furthermore, we reduce the hidden layer 

size of WP-LSTM to 100, we can observe that the 

performance just slightly degrades 0.024dB which means 

the design is robust. 

 In second experiment, we examine the average bit-

flipping attempts (latency). The simulation results are 

shown in Fig. 5. We can observe that the average bit- 

flipping attempts of the proposed design are relatively 

small. Compared with the conventional design [13], the 

proposed design can reduce 41.25% of average extra 

attempts with 𝑇𝑚𝑎𝑥 = 20 at EbN0 = 1.5dB.  

 From the simulations above, we can know that the 

proposed design cannot only enhance the BLER 

performance but also reduce the latency. 

 

4.2. Complexity Analysis of Neural Network Design 

In Table II, we compare the hardware complexity of the 

proposed design and the LSTM design without domain 

knowledge, whose inputs are the LLRs of 𝑁-bit message in 

𝐿 paths and the outputs are the whole information set. The 

design rule of the latter design is similar to [7]. 

 In Table II, the list size 𝐿 and hidden layer size are set to 

8 and 100, respectively. We can see that by taking advantage 

of domain knowledge for input data preprocessing and 

output dimension reduction, the proposed LSTM design can 

effectively reduce about 32% of complexity and memory 

usage.  

 

5. CONCLUSION 

 

In this paper, we present the novel LSTM-assisted CA-

SCLF decoder. The bit-flipping order can be learned from 

the LSTM network, and it can improve the performance and 

the latency compared to the conventional algorithms [13]. 

Also, we utilize the domain knowledge to reduce the 

complexity and memory requirements so that the hardware 

can be more friendly. In the future, we will research into the 

design for supporting multiple code rate.  

 

 

Fig. 4. Comparison of BLER performance between CA-SCL, CA-SCLF 

[13], and the proposed LSTM design. 

 

 

Fig. 5. Comparison of average extra attempts (latency) between CA-SCL, 
CA-SCLF [13], and the proposed LSTM design. 

TABLE II. COMPLEXITY ANALYSIS OF DIFFERENT 
NETWORK DESIGN 

 LSTM network w/o 

domain knowledge 

Proposed LSTM 

network w/ domain 

knowledge 

Addition 
~ (4 4 5)

~69300 (100%)

H H L K    ~ (4 9)

~47100 (67.9%)

H H S   

Multiplication 
~ (4 4 3)

~69100 (100%)

H H L K    ~ (4 7)

~46900 (67.8%)

H H S   

Memory 
~ (4 4 6)

~69400 (100%)

H H L K    ~ (4 + 10)

~ 47200 (68.0%)

H H S   
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