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ABSTRACT

We address the problem of simultaneously learning a k-means
clustering and deep feature representation from unlabelled data,
which is of interest due to the potential for deep k-means to
outperform traditional two-step feature extraction and shallow
clustering strategies. We achieve this by developing a gradient
estimator for the non-differentiable k-means objective via the
Gumbel-Softmax reparameterisation trick. In contrast to previous
attempts at deep clustering, our concrete k-means model can be
optimised with respect to the canonical k-means objective and
is easily trained end-to-end without resorting to time consuming
alternating optimisation techniques. We demonstrate the efficacy
of our method on standard clustering benchmarks.

Index Terms— Deep Clustering, Unsupervised Learning,
Gradient Estimation

1. INTRODUCTION

Clustering is a fundamental task in unsupervised machine learning
with numerous applications. A key challenge for clustering is the
inter-dependence between the data representation and the chosen
distance metric. For example, the ubiquitous k-means algorithm
assumes a fixed feature representation, distance metric, and
existence of spherical clusters. These assumptions lead to poor
performance if k-means is applied to complex high dimensional
data such as raw image pixels, rather than higher level features.
This observation motivates the vision of end-to-end deep cluster-
ing. Joint learning of data representation and k-means clustering
has the potential to learn a “k-means friendly” space [1] in which
high-dimensional data can be clustered without hand-engineering
of feature representations. More generally, unifying unsupervised
clustering and representation learning has the potential to alleviate
the data annotation bottleneck in the standard supervised deep
learning paradigm.

The main roadblock in deep k-means is the non-differentiability
of the discrete cluster assignment in the objective function. Two
recent methods—DEC [2] and DCN [1]—attempt to address this
issue by proposing surrogate losses and alternating optimisation
heuristics, respectively. However, the surrogate loss used by DEC
may not lead to an optimal solution of the k-means objective.
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Furthermore it makes use of soft instance-cluster assignment,
which is known to favour overlapping clusters compared to hard
assignment methods [3], and more importantly does not provide
the discrete assignments necessary for interpretability in some
applications of k-means [3]. In contrast, DCN resorts to alternat-
ing optimisation rather than end-to-end gradient-based learning.
This is slow and also restricts the ability to integrate clustering
as a module in a larger backprop-driven deep network. In this
paper we propose concrete k-means (CKM), the first end-to-end
solution to optimising the true k-means objective jointly with
representation learning. We achieve this by adapting the Gumbel-
Softmax reparameterisation trick [4] to allow differentiation and
backpropagation through the discrete cluster assignment. This
CKM algorithm enables joint training of cluster centroids and
representations, and can be optimised using standard methods
for training deep networks. Furthermore, we show that CKM
also provides a solver for shallow k-means, with comparable
performance to the standard Lloyd’s algorithm [5].

To summarise, our main contribution is the concrete k-means
algorithm, the first method to enable joint end-to-end learning of
clusters and representations in discrete-assignment deep k-means.

2. RELATED WORK

Clustering methods aim to find subgroups of data that are related
according to some distance metric or notion of density. The perfor-
mance of distance-based clustering algorithms is highly dependent
on the data representation, and the goal of deep clustering is to
learn a representation of the data that best facilitates clustering. k-
means is perhaps the most ubiquitous clustering method [5, 6, 7],
and it is widely used due to its simplicity and interpretability. For
this reason, several attempts have been made to develop deep
k-means generalisations. However, this is challenging due to
the non-differentiable hard assignment of data points to cluster
centres in the k-means objective. Xie et al. [2] show how to jointly
optimise an autoencoder and a k-means model to get a “k-means
friendly” latent space. The hard assignment in the k-means
objective prevents them from optimising the true loss function,
so their DEC method makes use of an approximation based on
soft assignment of instances to clusters. However, this surrogate
objective means that the solution to their model is not necessarily
a minimum of the k-means objective. In contrast, DCN [1]
resolves the issue by alternating optimisation. Each minibatch of



training data is first used to update the deep representation while
keeping the centroids held constant, and then used to update the
centroids while holding the representation constant. However,
alternating optimisation may be slow and ineffective compared to
an end-to-end solution. More importantly, it hampers integration
of clustering as a module in a larger end-to-end deep learning
system. We show how one can jointly train a deep representation
and cluster centroids with the standard k-means objective using
backpropagation and conventional deep learning optimisers.

3. CONCRETEK-MEANS

We first introduce the conventional k-means model. Following
this, we show how to adapt the k-means objective to train cluster
centroids and a deep neural network simultaneously. We refer to
this novel generalisation as Concrete k-Means (CKM), due to the
use of the concrete distribution [8].

3.1. Conventional k-Means

The k-means algorithm groups data points, {~xi}Ni=1 from some
space, X ⊂ Rd, into k different clusters parameterised by cen-
troids, {~µi}ki=1, also from Rd. By stacking each ~µi, the centroids
can be collectively represented as a matrix, M ∈Rk×d, where
each row corresponds to a cluster centre. The k-means objective
is to find the assignment and set of centroids that minimise the
distance between each point and its associated centroid.

min
H,M
‖X−HM‖2F (1)

s.t.‖~hj‖1=1,H∈{0,1}N×k

whereH∈{0,1}N×k is a binary matrix that represents the cluster
assignments of each point, ~hj is the jth row of H, and N is
number of data points.

The most common method for learning k-means clusters is
Lloyd’s algorithm [5], which can be formalised as an alternating
optimisation problem. The first step is to find the optimal cluster
assignments given the current cluster centres, and the second step
is to find the optimal cluster centres for a fixed set of assignments.
Both of these optimisation problems permit closed form solutions:
the first can be solved by finding the cluster centre closest (ac-
cording to Euclidean distance) to each data point, and the second
is minimised when each cluster centre is set to the mean of its
assigned data points. Lloyd’s algorithm alternates between finding
locally optimal solutions to these two problems until the cluster
assignments become stable.

3.2. Deep k-Means with Concrete Gradients

Deep k-means strategies aim to cluster the data in a learned embed-
ding space Z rather than the raw input space X . The embedding
is defined via a learned neural network z= f~φ(x). Following
previous work [2, 1], we avoid degenerate solutions by defining
an autoencoder that regularizes the latent space by reconstructing

the original input. Specifically, we define an encoder, f~φ :X→Z,
which maps from the input space to the latent space, and decoder,
g~ϕ :Z→X , which maps from the latent space back to the input
space. These networks are then composed and their parameters,
~φ and ~ϕ, are trained to minimise the reconstruction error,

LAE(X,~φ,~ϕ)=
N∑
i=1

‖~xi−g~ϕ(f~φ(~xi))‖
2
2. (2)

The proposed algorithm performs clustering in the latent space
Z rather than the input space X . In the conventional k-means
algorithm, a data point is assigned to the cluster with the nearest
centroid, as measured by Euclidean distance. The hard assignment
operation is not differentiable, thus precluding the direct use of
standard gradient-based optimisation techniques for training neural
networks. We reformulate the non-differentiable assignment oper-
ation using the Straight-Through Gumbel-Softmax estimator [4].
This reparameterisation trick enables the use of a probabilistic
hard assignment during the forward propagation, while also al-
lowing gradients to be backpropagated through a soft assignment
in order to train the network. We keep the Euclidean distance of
the traditional k-means algorithm, and model cluster assignment
probabilities using normalised radial basis functions (RBFs),

p(Ci,j|~xi)=
exp{−σ−2‖~zi−~µj‖22}∑k
c=1exp{−σ−2‖~zi−~µc‖22}

, (3)

where Ci,j is the event that instance i is assigned to cluster j,
and ~zi = f~φ(~xi), and we have omitted the dependence of p

on M and ~φ to keep notation compact. One can now sample
one-hot vectors from p(Ci|~xi), while simultaneously being able to
backpropagate through the sampling process, by instead sampling
from a Gumbel-Softmax distribution—a continuous relaxation
of the distribution of one-hot encoded samples from p(Ci|~xi).
By introducing Gumbel distributed random variables, G, one
can make use of a reparameterisation trick to sample from the
Gumbel-Softmax distribution,

hi,j=
exp{τ−1(log(p(Ci,j|~xi))+Gj)}∑k
c=1exp{τ−1(log(p(Ci,c|~xi))+Gc)}

, (4)

where hi,j is the jth component of the vector, ~hi corresponding to
instance ~xi, and τ ∈(0,∞) is a temperature hyperparameter used
for controlling the entropy of the continuous relaxation. As τ goes
to zero, ~hi converges towards true one-hot samples from p(Ci|~xi).
In contrast, as τ goes to infinity, the~hi converge towards a uniform
distribution. In practice, we start training with a high temperature
and gradually anneal it towards zero as training progresses. The
~hi vectors can be discretised by rounding the largest component
to one, and all others to zero, giving a truly discrete sample dis-
tributed according to p(Ci|~xi). We denote the discretization of ~hi
by ~̃hi. With this notation, we define the concrete k-means loss as

LCKM(X,M,~φ)=

N∑
i=1

||f~φ(~xi)−~̃hiM ||
2
2, (5)



~x f~φ(~x) p(C|~x)
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ST-GumbelSoftmax(·) ~̃h·M
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LCKM

Fig. 1. A computational graph view of the information flow for the
concrete k-means algorithm. Solid arrows indicate computation
during forward propagation, and dashed arrows indicate gradient
flow during backpropagation. The red dashed arrows show which
gradients are computed by the concrete gradient estimator.

Algorithm 1: Concrete k-means clustering

Input:X,α,η,λ,~φ(0),~ϕ(0),M(T1)

Output: ~φ(T2),~ϕ(T2),M(T2)

begin
for t←0 to T1 do
(~φ(t+1),~ϕ(t+1))←(~φ(t),~ϕ(t))−α∇(~φ,~ϕ)L

AE(X);
end
for t←T1 to T2 do
~φ(t+1)←~φ(t)−η∇~φ(L

AE(X)+λ1LCKM(X));
~ϕ(t+1)←~ϕ(t)−η∇~ϕLAE(X);
M(t+1)←M(t)−η∇Mλ1LCKM(X);

end
end

noting that ~̃hi is a row vector. During the forward propagation,
~̃hi is used for evaluating the k-means loss. During the backward
pass, the gradient is estimated by back-propagating though the

same loss, but parameterised by ~hi instead of ~̃hi. This method of
computing gradients for one-hot encoded categorical variables is
known as the straight through Gumbel-softmax estimator [4], or
the concrete estimator [8].

To train our Concrete k-means, we optimize the main CKM
objective in Eq. 5 along with the autoencoder, with respect to
encoder and decoder parameters as well as cluster centres. The
full objective is:

min
M,~φ,~ϕ

LAE(X,~φ,~ϕ)+λ1LCKM(X,M,~φ), (6)

where λ1 is a regularisation strength hyperparameter. The stochas-
tic computational graph [9] in Figure 1 illustrates the flow of infor-
mation during training for both the forward and backward passes.

3.3. Shallow Concrete k-means

Our algorithm is motivated by the vision of joint clustering and
representation learning. Nevertheless, it is worth noting that
as a byproduct it provides a novel optimisation strategy for the
conventional k-means objective in Equation 1. We simply run

CKM on raw features, which can be interpreted as fixing the
encoder and decoder to the identity function, and solve Equation 6
for centroids M alone. Thus we use stochastically estimated
gradients to solve conventional k-means by gradient descent
rather than alternating minimisation [5].

4. EXPERIMENTS

In this section, we evaluate CKM in conventional shallow and
deep clustering.

4.1. Shallow Clustering

The concrete k-means method presented in Section 3.2 does not
require the presence of a feature extraction network, and can
thus be used to optimise the k-means objective in the ‘shallow’
setting where Lloyd’s [5] and k-means++ [6] are typically applied.
Our first experiment aims to confirm if the CKM gradient-based
stochastic optimisation matches the performance of the standard
k-means solvers. Table 2 reports the clustering results of our
shallow CKM and sklearn’s k-means++ implementation on ten
UCI datasets. The evaluation metrics used for these experiments
are normalized mutual information (NMI) [10], adjusted rand
index (ARI) [11], and cluster purity (ACC). The values of ACC
and NMI are rescaled to lie between zero and one, with higher
values indicating better performance. The range of the ARI is
negative one to one. We can see that CKM performs comparably
to the industry standard k-means optimizer.

4.2. Deep Clustering

Datasets We conduct deep clustering experiments are using the
following datasets from the image and natural language domains:
MNIST [12] consists of 70,000 greyscale images of handwrit-
ten digits. There are 10 classes and each image is 28×28 pixels,
with the digits appearing inside the central 20× 20 pixel area.
USPS is a dataset of 16×16 pixel handwritten digit images.
The first 7,291 images are designated as the training fold, and the
remaining 2,007 are used for evaluating the final performance of
the models. 20Newsgroups was generated by collecting a total
of 18,846 posts over 20 different newsgroups. We use the same
preprocessing as [1], where the tf-idf representation of the 2,000
most frequently occurring words are used as features.
Metrics The evaluation metrics used for these experiments are
normalized mutual information (NMI) [10], adjusted rand index
(ARI) [11], and cluster purity (ACC). The values of ACC and
NMI are rescaled to lie between zero and one, with higher values
indicating better performance. The range of the ARI is negative
one to one.
Architecture Like most deep clustering methods (e.g., [1] and
[2]), our approach involves pretraining an autoencoder before
optimising the clustering objective. The encoder architecture used
for the clustering experiments on MNIST and USPS contains
four fully connected layers with 500, 500, 2000, and 10 units,



Method MNIST USPS 20NEWSGROUP
NMI ARI ACC NMI ARI ACC NMI ARI ACC

KMh 51.8±0.4 36.5±0.4 53.3±0.5 60.0± 0.7 44.0±0.9 58.0±0.9 22.7±1.7 8.0±1.4 22.6±2.1
AE+KMh 74.3±0.9 66.9±0.8 80.6±1.2 68.1±0.3 59.4±0.4 68.4±0.7 42.0±1.7 28.3±1.2 44.3±2.3
DCNh 81.7±1.1 75.2±1.2 83.1±1.9 71.9±1.2 61.9±1.4 73.9±0.8 44.7±1.5 34.4±1.3 46.3±2.9
DECe 80.4±1.3 76.3±1.8 84.2±1.7 72.6±1.1 63.8±0.9 71.1±2.5 48.6±1.2 35.4±1.4 49.1±2.5

CKMh,e 81.4±1.8 77.7±1.1 85.4±2.1 70.7±0.2 61.3±0.2 72.1±0.4 46.5±1.4 34.1±1.6 47.3±2.3

Table 1. Deep clustering results on MNIST, USPS and 20 Newsgroups. h indicates methods with interpretable hard assignments, and e

indicates methods with end-to-end learning by backpropagation. Only our Concrete k-means combines hard assignment and end-to-end
learning. Blue indicates best result among hard clustering methods, bold indicates best result overall.

Shallow CKM k-means
NMI ARI ACC NMI ARI ACC

pendigits 0.50±0.04 0.33±0.05 0.49±0.05 0.51±0.04 0.34±0.05 0.49±0.05
dig44 0.33±0.04 0.20±0.05 0.40±0.05 0.33±0.04 0.20±0.05 0.40±0.05
vehicle 0.15±0.03 0.09±0.03 0.40±0.03 0.15±0.03 0.09±0.03 0.40±0.03
letter 0.35±0.01 0.13±0.01 0.26±0.01 0.35±0.01 0.13±0.01 0.25±0.01
segment 0.41±0.05 0.27±0.05 0.46±0.04 0.41±0.05 0.27±0.05 0.46±0.04
waveform 0.35±0.04 0.27±0.04 0.57±0.05 0.36±0.01 0.25±0.01 0.52±0.02
vowel 0.41±0.01 0.21±0.01 0.36±0.02 0.42±0.01 0.21±0.01 0.36±0.02
spambase 0.10±0.03 0.09±0.05 0.66±0.04 0.10±0.03 0.09±0.05 0.66±0.04
twonorm 0.84±0.00 0.91±0.00 0.98±0.00 0.84±0.01 0.91±0.01 0.98±0.00
sat 0.58±0.05 0.48±0.08 0.64±0.07 0.58±0.05 0.48±0.08 0.64±0.07

Table 2. Shallow CKM uses gradient estimation to solve the standard fixed-feature k-means problem equally well to the conventional
alternating minimisation based k-means++ [6] implemented in scikit-learn.

respectively. For the 20Newsgroup experiments, the smaller
encoder with 250, 100, and 20 units described by [1] is used. The
decoder that maps the hidden representation back to the input
space is the mirror version of the encoder.

Competitors Comparisons are made with DEC [2] and
DCN [1], as well as some simple baselines. KM applies clas-
sic shallow K-means to raw input features from X . AE+KM
performs two step dimensionality reduction and clustering by
training an autoencoder with the same architecture as CKM to
embed instances into the latent space Z, and then fixes this space
before applying classic k-means clustering.

In Table 1 we illustrate the results of our CKM and the
comparison with other models. For all experiments in this section,
k is set to the number of classes present in the dataset. We run
each method 15 times with different initial random seeds and
report the mean and standard deviation of each result.

From the results, we can see that all the deep methods out-
perform shallow k-means on raw-features (KM), and furthermore
all the jointly trained methods outperform the two-step baseline
(AE+KM). Compared to the published state of the art methods, our
CKM approach generally performs best on MNIST, and compa-
rably to DEC and DCN on USPS and 20Newsgroup. Importantly,
our CKM is the only high-performing method to combine the

favorable properties of hard-assignment, which is important for
interpretability in many applications [3]; and end-to-end deep
learning, which is important to be able to integrate clustering func-
tionality as a module into a larger backpropagation-driven system.
Runtime Efficiency: Comparing the three deep clustering
methods, DCN’s alternating optimisation is slower than the end-
to-end DEC and CKM. For MNIST, the clock time per epoch is
11s, 10s, and 36s for CKM, DEC and DCN respectively.

5. CONCLUSION

This paper proposes the concrete k-means deep clustering frame-
work. Our stochastic hard assignment method is able to estimate
gradients of the nondifferentiable k-means loss function with
respect to cluster centres. This, in turn, enables end-to-end training
of a neural network feature extractor and a set of cluster centroids
in this latent space. Our experimental results show that the
proposed method is competitive with state-of-the-art approaches
for solving deep clustering problems.
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