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ABSTRACT
Recent deep neural networks based techniques, especially
those equipped with the ability of self-adaptation in the system
level such as deep reinforcement learning (DRL), are shown
to possess many advantages of optimizing robot learning sys-
tems (e.g., autonomous navigation and continuous robot arm
control.) However, the learning-based systems and the asso-
ciated models may be threatened by the risks of intentionally
adaptive (e.g., noisy sensor confusion) and adversarial pertur-
bations from real-world scenarios. In this paper, we introduce
timing-based adversarial strategies against a DRL-based nav-
igation system by jamming in physical noise patterns on the
selected time frames. To study the vulnerability of learning-
based navigation systems, we propose two adversarial agent
models: one refers to online learning; another one is based
on evolutionary learning. Besides, three open-source robot
learning and navigation control environments are employed to
study the vulnerability under adversarial timing attacks. Our
experimental results show that the adversarial timing attacks
can lead to a significant performance drop, and also suggest
the necessity of enhancing the robustness of robot learning
systems.

Index Terms— Deep Reinforcement Learning, Adversar-
ial Robustness, Decision Control, Intelligent Navigation

1. INTRODUCTION

Deep Reinforcement Learning (DRL) has gained a widespread
applications in digital gaming, robotics and control. In particu-
lar, the main DRL approaches, such as the value-based deep
Q-network (DQN) [1], Asynchronous Advantage Actor-Critic
(A3C) [2], and the population-based Go-explore [3], have
succeeded in mastering many dynamically unknown action-
searching environments [3]. Relying on the similarity between
the adaptive and interacting behaviors, DRL-based models
are commonly used in the domain of navigation and robotics,
and achieve a noticeable improvement over classical methods.
However, despite the significant performance enhancement,
DRL-based models may incur some new challenges in terms

of system robustness against adversarial attacks. For example,
the DRL-based navigation systems are likely to propagate and
even enlarge risks (e.g., delay, noisy, and pixel-wise pulsed-
signals [4] on the sensor networks of vehicle [5]) induced
from the attackers. Besides, unlike the image classification
tasks where only a single mission gets involved, the navigation
learning agent has to deal with a couple of dynamic states
(e.g., inputs from sensors or raw pixels) and the related re-
wards. Our work mainly focuses on the robustness analysis of
strategically-timed attacks by potential noises incurred from
the real world scenarios. More specifically, we formulate the
adversarial attacks on two DRL-security settings:

• White-box attack: if attacker can access to model pa-
rameters, some potential function needs to be used to
estimate the learning performance to jam in noise.

• Black-box attack: without the requirements of model
parameters, the attacker trains a policy agent with the
opposite reward objective via observing actions from
the victim DRL network, the state, and the reward from
the environment.

To validate the adversarial robustness of a navigation sys-
tem, we attempt a new and important research direction based
on a 3D environment of (1) continuous robot arm control
(e.g., Unity Reacher); (2) sensor-input navigation system (e.g.,
Unity Banana Collector [6]); (3) raw images of self-driving
environments (e.g., Donkey Car) as shown in Fig.1 (a), (b),
and (c).

2. RELATED WORK

Scheduling Physical Attacks on Sensor Fusion. Sensor
networks for the navigation system are susceptible to flooding-
based attacks like Pulsing Denial-of-Service (PDoS) [7] and
adversary selective jamming attacks [8]. The related work
includes the security and robustness of background noise,
spoofing pulses, and jamming signals on autonomous vehicles.
For example, Yan et al. [9] show that PDoS attacks can fea-
sibly conduct on a Tesla Model S automobile equipped with
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standard millimeter-wave radars, ultrasonic sensors, forward-
looking cameras. Besides, to detect any anonymous network
attacks, a sensing engine defined by some offline algorithms
is required within a built-in network system. Furthermore,
a recent work [10] also demonstrates that the LiDAR-based
Apollo-Auto system [11] could be fooled by adversarial noises
during the 3D-point-cloud pre-processing phase as a malicious
reconstruction.
Adversarial Attacks on Deep Reinforcement Learning.
Many works are denoted to adversarial attacks on neural
network classifiers in either white-box settings or black-box
ones [12, 13]. Goodfellow et al. [14] proposed adversarial
examples for evaluating the robustness of machine learn-
ing classifiers. Zeroth order optimization (ZOO) [13] was
employed to estimate the gradients of black-box systems
for generating adversarial examples. Besides, the tasks on
RL-based adversarial attacks aim at addressing policy miscon-
duct [15, 16] or generalization issues [17]. In particular, Lin
et al. [16] developed a strategically-timed attacking method
in which at time t, an agent takes action based on a policy
derived from a Potential Energy Function [18]. However,
these approaches do not consider the update of online weights
associated with the size of the action space. In this work, we
further improve the potential estimated model from [16] by
weighted-majority online learning, which owns a performance
guarantee with a bound for regretT in Eq. (4). Besides, we
introduce a more realistic black-box timed-attack setting.

Reward
Reward

Reward

(1) (2) (3)

(4) (5) (6)

Fig. 1: The 3D robot learning environments: (1) continuous
robot arm control as the Env1; (2) banana collector as the
Env2; (3) self-driving donkey car as the Env3. Noisy obser-
vation under timing attack: (4) zero-out; (5) random sensor
fusion; (6) adversarial perturbation.

3. METHOD

3.1. Noisy Observation from the Real World

We define a noisy DRL framework of a robot learning system
under perturbation, where a noisy state observation noisy_st
can be formulated as the addition of a state st and a noise
pattern noise(t):

noisy_st = st + noise(t). (1)

We propose three principal types of noise test (from T1, T2 to
T3 ) from the real world to impose adversarial timing attacks:
Pulsed Zero-out Attacks (T1): Off-the-shelf hardwares [9]

can affect the entire sensor networks by an over-shooting noise
noisy_st = 0 incurred from a timing attack in Eq.(1) as Fig.
1 (4).
Gaussian Average on Sensor Fusion (T2): Sensor fusion is
an essential part of the autonomous system by combining of
sensory data from disparate sources with less uncertainty. We
define a noisy sensor fusion system by a Gaussian filter for
getting noisy_st in Eq.(2) and shown as Fig. 1 (5).
Adversarial Noise Patterns (T3): Inspired by the fast gradi-
ent sign method (FGSM) [12, 15] based DQN attacks, we use
FGSM to generate adversarial patterns against the prediction
loss of a well-trained DQN. We use ε = 0.3 and a restriction
of `∞-norm, where x is the all input including st and rt; y
= at is an optimal output action by weighting over possible
actions in Eq.(2):

noise(t) = ε sign (∇xJ(θ, x, y)) . (2)

To evaluate the performance of each timing selection algo-
rithm in following sections, each model will receive noise
patterns (from T1, T2 to T3) and average the total reward
as Table 1. In a perspective of system level, we take the ran-
dom pulsed-signal as a attacking baseline. We jam in PDoS
signals discussed in Sec. 3.1 randomly with maximum con-
strains H times (we use H = 40 from [16] as a baseline) to
block agent from obtaining actual state observations in an
episode.

3.2. Enhanced White-Box Strategically-Timed Attack by
Online Learning

White-box adversarial setting. Recently, since various pre-
defined DRL architectures and models (e.g., Google Dopamine
[19]) are released for public use and as a key to Business-to-
Business (B2B) solution, an adversarial attacker is likely to
access the open-source and design an efficient strategically-
timed attack.
Weighted-Majority Potential Energy Function. We first
propose an advanced adversarial attack which is originated
from online learning and based on the algorithm of weighted
majority algorithm (WMA). The procedures of WMA are
shown in Eq. 3 and Algorithm 1, where we introduce d ex-
perts for weighting the revenues incurred by taking d actions.
The weights of experts are equally initialized to 1 and then
iteratively updated as the step (12) in the Algorithm 1. At each
time t, steps (7) and (8) suggest that we obtain both amax

t and
amin
t which correspond to the actions of maximum and mini-

mum costs. The decision of attacking the states relies on the
threshold value c(st,wt, a

max
t , amin

t ). If c(st,wt, a
max
t , amin

t )
is greater than a pre-specified constant threshold β, we intend
to attack the states by adding pulses to make the user have
random observations. The choices of c(st,wt, a

max
t , amin

t )
are based on the difference of two potential energy functions



(inspired by [16] and [15]) defined as (3)1:

c(st,wt, a
min
t , amax

t ) =
wT

t exp(−Q(st, a
max
t ))∑

a
(k)
t

wT
t exp(−Q(st, a

(k)
t ))

− wT
t exp(−Q(st, a

min
t ))∑

a
(k)
t

wT
t exp(−Q(st, a

(k)
t ))

(3)

We use the strategically-timed attacks in [16] as a baseline
with β = 0.3 to evaluate our WMA-enhance algorithms. Then,
we further discuss a learning bound for this advanced WMA-
policy estimation.
Proposition 1: Assuming that the total number of rounds
T > 2 log(d), the weighted algorithm enjoys the bound as
Eq.(4), where Zt denotes a normalization term at time t.

regretT

=

T∑
t=1

wT
t exp(−Q(st, at))

Zt
−min

i∈[d]

T∑
t=1

exp(−Q(st, a
(i)
t ))

Zt

≤
√

2 log(d)T .

(4)

Proposition 1 [18] suggests that the weighted revenues are
more likely to reach the global optimal in theory, since the
regret at time T is upper bounded by a constant value in Alg.1.

3.3. Black-Box Strategically-Timed Attack by Adversar-
ial Evolutionary Strategy

Black-box adversarial setting. Since an adversarial insidious
attacking agent is hardly recognizable, an adversarial agent
is able to drive the equilibrium of DRL-based system with an
opposite objective reward without any information of targeted
DRL-model. Thus, we propose an adversarial-strategic agent
(ASA) via a population-based training method based on pa-
rameter exploring policy gradients [20] (PEPG) to optimize
a black-box system. The PEPG-ASA algorithm can dynami-
cally select sensitive time frames for jamming in an physical
noise patterns in Section 3.1, which is likely to minimize the
total system-rewards from an off-online observation of the
input-output pairs without accessing actual parameters from
the given DRL framework as below:

• observation: records of state S from [s0, s1,..., sn] and
adversarial reward against victim navigation DRL-agent
Radvs from [r0, r1,..., rn], an adversarial reward Radv

as a black-box security setting.

• adversarial reward Radv: a negative absolute value of
the environmental reward Renv .

1For potential energy estimation on policy-based model (e.g., A3C), we
use a weighted-majority average as c (st, wt) = maxat w

T
t π (st, at) −

minat w
T
t π (st, at).

An obvious way to maximize E[Radv|s, aadv, πadv] is to es-
timate ∇E. Differentiating this form of the expected return
with respect to ρ and applying sampling methods, where ρ in
Eq. (5) are the parameters determining the distribution over θ,
the agent can generate h from p(h|θ) and yield the following
gradient estimator:

∇ρE(ρ) ≈ 1

N

N∑
n=1

∇ρ log p(θ|ρ)r (hn) . (5)

The probabilistic policy, which is parametrized over a single
parameter θ for PEPG, has the advantage of taking determinis-
tic actions such that an entire track of history can be traced by
sampling the parameter θ.

4. RESULTS

4.1. 3D Control and Robot Learning Environment Setup

Our testing platforms were based on the most recently released
open-source ‘Unity-3D’ environments [6] for robotic applica-
tions.
Env1 Reacher: A double-jointed arm could move to the de-
sired position. A reward of +0.1 is provided for each step
that the agent’s hand is in the goal location. The observation
space consists of 33 variables corresponding to the position,
rotation, velocity, and angular velocities of the arm. Every
action is a vector with four numbers, corresponding to torque
applicable to two joints. Each entry in the action vector should
be a numerical value between -1 and 1.
Env2 Banana Collector: A reward of +1 is provided for
collecting a yellow banana, and a reward of −1 is provided
for collecting a blue banana from a first-person view vehicle
to collect as many yellow bananas as possible while avoiding
blue bananas. The state-space has 37 dimensions and contains
the agent’s velocity, along with the ray-based perception of
objects around the agent’s forward direction. Four discrete
actions are available to associate with four moving directions.
Env3 Donkey Car: Donkey Car is an open-source embedded
system for radio control vehicles with an off-line RL simulator.
The state input is the image from the front camera with 80 ×
80 pixels, the actions are equal to two steering values ranging
from -1 to 1, and the reward is a cross-track error (CTE). We
use a modified reward from [21] divided by 1k to balance
track-staying and maximize its speed.

4.2. Performance Evaluation

We applied two classical DRL algorithms, namely DQN
and A3C, to evaluate the learning performance relative to
well-trained DRL models in Tab. 1.
Baseline (aka no attack): We modify DQN and A3C models
from the open-source Dopamine 2.0 [19] package to avoid an
overparameterized model with reproducibility guarantee.
Adversarial Robustness (aka under attack): Assuming



Algorithm 1 Adversarial Online Learning Attack based on Weighted Majority Algorithm

1. Input: number of experts, d; number of rounds, T , a threshold constant β.
2. Parameter: η =

√
2 log(d)/T , expert weight w ∈ Rd associated with d actions.

3. Initialize: w̄ = (1, 1, ..., 1) .
4. For t = 1, 2, ..., T

5. Set wt = w̄t/Zt, where Zt =
∑

i w̄
(i)
t .

6. Receive revenues from all experts Q(st, at) = [Q(st, a
(1)
t ), Q(st, a

(2)
t ), ..., Q(st, a

(d)
t )].

7. amin
t ← arg minat

wT
t exp(−Q(st, at)).

8. amax
t ← arg maxat

wT
t exp(−Q(st, at)).

9. Compute the threshold function c(st,wt, a
max
t , amin

t ).
10. If c(st,wt, a

max
t , amin

t ) > β:
11. Attack the state by st ←shuffle(st)

12. Update rule ∀i, w̄(i)
t+1 = w̄(i)

t exp(−ηQ(st, a
(i)
t )).

Table 1: A comparison of Performance of the timing attack algorithms on Env1, Env2, and Env3 environments. We try to
evaluate the robustness of a robot learning system with four types of strategically-timed attack algorithms, namely random
selection; weighted majority algorithm (WMA); parameter exploring policy gradients [20] adversarial strategy agent (PEPG-
ASA), and Lin et al. [16]. All experiments are tested for ten times under three different types of noise patterns (zero-out, Gaussian,
and adversarial noises), where the total rewards are averaged by dividing 30.

Model Baseline Random WMA PEPG-ASA Lin et al. [16]
Env1: Continuous Robot-Arm Control with DQN [1] 30.2±2.1 22.8±0.4 4.2±1.0 6.4±1.3 5.2±1.2
Env1: Continuous Robot-Arm Control with A3C [2] 30.1±3.6 23.2±0.5 3.2±0.7 5.2±1.0 5.6±1.3
Env2: 3D-Banana Collector Navigation with DQN 12.1±2.1 10.8±2.8 3.2±2.3 7.4±1.9 6.9±1.6
Env2: 3D-Banana Collector Navigation with A3C 12.1±1.6 9.6±1.7 3.4±1.1 5.3±1.4 5.2±1.3
Env3: Donkey Car Navigation with DQN 1.2±0.1 0.8±0.5 0.2±0.1 0.4±0.2 0.4±0.1
Env3: Donkey Car Navigation with A3C 1.1±0.4 0.8±0.2 0.3±0.2 0.6±0.3 0.6±0.2

the presence of one adversarial attacker, we highlight some
important results. Overall, although the WMA (white-box
setting) outperforms the PEPG-ASA (black-box setting), it
also requires much more information of a navigation system
during the online potential-energy estimation and training. In
Fig. 2, we show a result of DQN evaluate on the four types
of attack method compared with the baseline performance,
a random noise injector (Random), WMA, PEPG-ASA, and
Lin [16] shown in Tab. 1. WMA shows a stable threaten result
as a competitive attack method.

5. CONCLUSION

This work introduces two novel adversarial timing attacking
algorithms for evaluating DRL-based model robustness under
white-box and black-box adversarial settings. The experiments
suggest that the improved performance of DRL-based contin-
uous control and robot learning models can be significantly
degraded in adversarial settings. In particular, both valued
and policy-based DRL algorithms are easily manipulated by
a black-box adversarial attacking agent. Besides, our work
points out the importance of the robustness and adversarial
training against adversarial examples in DRL-based navigation
systems. Our future work will discuss the visualization and
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Fig. 2: Learning performance of a DQN agent testing in Unity
3D banana collector, a 3D-navigation task, included the base-
line (a.k.a. no attacks); random jamming, WMA, PEPG-ASA,
and the method from Lin et. al.

interpretability of robot learning and control systems in order
to secure the system. To improve model defense, we could
also adapt the adversarial training [12] to train DQN & A3C
models by noisy states.
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