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ABSTRACT

Two common problems in time series analysis are the de-
composition of the data stream into disjoint segments that are
each in some sense “homogeneous” - a problem known as
Change Point Detection (CPD) - and the grouping of simi-
lar nonadjacent segments, a problem that we call Time Series
Segment Clustering (TSSC). Building upon recent theoretical
advances characterizing the limiting distribution-free behav-
ior of the Wasserstein two-sample test (Ramdas et al. 2015),
we propose a novel algorithm for unsupervised, distribution-
free CPD which is amenable to both offline and online set-
tings. We also introduce a method to mitigate false positives
in CPD and address TSSC by using the Wasserstein distance
between the detected segments to build an affinity matrix to
which we apply spectral clustering. Results on both synthetic
and real data sets show the benefits of the approach.

Index Terms— change point detection, time series seg-
ment clustering, Wasserstein two-sample, optimal transport.

1. INTRODUCTION

Change point detection (CPD) is a fundamental problem in
data analysis with implications in many real world applica-
tions including the analysis of financial [1], electrocardio-
gram (ECG) [2], and human activity data [3]. Given a collec-
tion of change points, time series segment clustering (TSSC)
seeks to group nonadjacent periods of activity which are, in
some sense, ”similar,” in an unsupervised manner. Applica-
tions here overlap with those of CPD [4].

In this paper, we focus on the use of statistical methods for
CPD which are broadly classified as either parametric (model-
based) or non-parametric [5,6]. The problem formulation em-
ployed by the majority of methods takes the observations as
a sequence of random variables whose distribution changes
abruptly at unknown points in time. The processing goal for
CPD is to determine when the switches occur and, in those
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instances where TSSC is required, use a similarity measure to
cluster like segments.

Parametric methods employ a specific model for the dy-
namics of the time series (either assumed [7] or learned from
data [8]) and then make use of decision theory to identify
change points. Classically, ARMA-type models and their
state-space generalizations were the basis for parametric
efforts starting in [9] with recent work focusing on hierar-
chical models such as switching linear-dynamical systems
(SLDS) [10]. Generally, parametric methods are effective
when the modelling assumptions hold. For example, SLDS
assumes geometric state duration distributions and Gaussian
observation models. When these assumptions are not appli-
cable, performance will likely suffer.

When the dynamics or observations cannot be easily
modeled, we can consider distribution-free methods that do
not assume any particular parametric family of distributions.
Change points are then estimated from sample distributions
using density-ratio estimates [11, 12] or through two-sample
tests like maximum mean discrepancy (MMD) [13], which
was recently used for non-parametric CPD [3].

Similar to CPD, parametric TSSC methods have been ex-
plored using ARMA based models [14] or HMMs [15]. Non-
parametric TSSC methods generally use alternate representa-
tions of time series such as frequency-based wavelet decom-
positions [16] or distribution-based methods [17].

In this work, we contribute a new set of non-parametric
CPD and TSSC methods based on recent statistical results in
the theory of Optimal Transport (OT). Assuming independent
and identically distributed (IID) data, Ramdas et al. [18] pro-
vides a theoretical analysis of the asymptotic distribution of
an OT-based two-sample test under the null hypothesis for
deciding whether two empirical probability density functions
are from the same distribution. We use this result as the ba-
sis for a sliding window test for identifying change points
in a scalar time series. Another novel aspect of our method
is the development of a statistically-derived ”matched filter”
for post-processing our OT statistic to reduce false positives.
Given the identified change points, we develop an OT-based
spectral clustering scheme for TSSC.

To organize this paper, we start with an overview of opti-
mal transport concepts followed by problem formulation for
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Fig. 1. The time series X[t] ∈ R3 can be decomposed at change points τ i into 4 segments T i represented by 3 actions. Sample
windows of time series data (left) are represented as point cloud in R3 (center) which in turn corresponds to a single point in
the space of all probability measures X (right), which is an estimate of the process distribution. The proposed method uses the
Wasserstein two-sample test between adjacent windows on each dimension independently as the change point test statistic. At
tn1

the two windows belong to similar distributions and thus no change is detected. However at tn2
spanning the change point

τ2 places the distributions of adjacent windows in different clusters K2,K1 thus resulting in a high CPD statistic.

CPD and TSSC. We then detail our proposed method and
evaluate our techniques on toy and real-world data sets. We
show improved precision and recall for CPD (as summarized
in F1 scores) compared to state of the art. We also show im-
proved label accuracy in TSSC for human activity data.

2. OPTIMAL TRANSPORT BACKGROUND

Given two probability distributions p(x), q(y), where x, y ∈
Rd, the 2-Wasserstein distance, or earth mover’s distance,
W2(p(x), q(y)) is defined as the minimum expected squared
Euclidean cost required to transport p(x) to q(y). Formally,

W2(p(x), q(y)) = min
πεΠ

∫
x

∫
y

‖x− y‖22 π(x, y)dxdy,∫
y

π(x, y) = p(x),

∫
x

π(x, y) = q(y) (1)

where Π denotes the set of all joint distributions. It is well-
known that (1) is a linear program. Further,W2(·, ·) is a met-
ric on the set of probability distributions [19] and metrizes
weak convergence of probability measures.

We employ a distribution-free, non-parametric Wasser-
estein two-sample test (W2T) as a discrepancy measure be-
tween two sets of points. To this end, we note the following:

Theorem 2.1 (From [18]) Under the null hypothesis H0 :
P = Q, given empirical CDF’s Pm, Qn consisting of m,n
IID samples from scalar distributions P ,Q,W2T (Pm, Qn) =
mn
m+n

∫ 1

0
(Pm(Q−1

n (x))− x)2dx
d−→
∫ 1

0
B2(x)dx = B2

where B(x) denotes the standard Brownian motion. From
[20], B2 has mean µB2 = 0.166 and that we reject the null
with confidence α = 0.05 using a threshold of λ = 0.462.

3. PROBLEM FORMULATION

As detailed in Fig. 1 and throughout, we consider a time se-
ries X[t] ∈ Rd, t = 1, 2, . . . , where the data consists of dis-

tinct time segments [0, τ1], [τ1 + 1, τ2], . . . , [τS−1 + 1, τS ],
with τ1 < τ2 < . . . such that within each time segment,
X[t], t ∈ [τ i−1 + 1, τ i], i = 1, 2, ..., S, are IID samples from
one of k = 1, 2, . . .K unknown distributions, where we as-
sume here that K is known a priori. The problem of change
point detection (CPD) is to estimate τ i, and the problem of
time series segment clustering (TSSC) is to cluster the S seg-
ments into K classes.

4. PROPOSED METHOD

4.1. Change Point Detection

Given time-series X[t], we define two empirical probabil-
ity density functions (PDFs) at each time t generated from
the sum of dirac-delta functions supported on a window of
β samples collected before and after t yielding pβ

±

X[t](x) =
1
βΣβτ=1δ(x−X[t± τ ]). After transforming each PDF p into
a cumulative distribution function (CDF) P , we can compute
a change point statistic from the Wasserstein two-sample test
(W2T) between the CDFs of the two windows:

σ[t] =W2T

(
P β

−

X[t](x), P β
+

X[t](x)
)
. (2)

The nominal, offline approach to CPD is to label local max-
ima of σ[t] that exceed some threshold parameter as change
points [3]. Shown through empirical analysis on both simu-
lated and real data, we find this is problematic. Fig. 2 indi-
cates the presence of spurious local maxima leading to a large
number of false alarms and ambiguity in the change point
locations. Moreover, the sliding-window nature of the pro-
cessing causes a change point at time t to create an extended
signature in σ[t] over the interval [t− β, t+ β].

These observations suggest the benefit of a matched fil-
tering approach to reduce the spurious maxima and better lo-
calize true changes. In Fig. 3 we estimate the shape of this
signature empirically by averaging over ensembles of simu-
lated IID data with a known change points separating sam-



Fig. 2. CPD and TSSC results from HASC2016-PAC data (black, left axis). For CPD, we plot both unfiltered (thin purple) and
match filtered (thick purple) change point statistics (right axis). The left subplot shows how the matched filter removes false
positives and improves localization of the change point. For TSSC, the bottom row shows our method’s assigned cluster labels,
which make only one mistake relative to ground truth (GT) by grouping the stair-down segment with the last walk segment.

Fig. 3. Un-normalized empirically estimated matched filter.
Given a change point at t = 0 and window size β, the effects
of the change point are reflected in the W2T statistic on the
interval [−β, β]. Thin traces represent the ensemble average
of 200 IID sequences with different simulated change points
(N(0, 1)→ N(0.2, 1), N(0, 1)→ N(0, 1.2) and N(0, 1)→
L(0, 1√

2
)). The matched filter h[t] is normalized by removing

the bias µB2 and scaling by γ to have unit area.

ples from different pairs of distribution. From this plot, we
observe that the structure of this function across a number of
distributional changes is remarkably consistent. The theoreti-
cal analysis and discussion of this filter is left to future work.
We derive the filter h[t] by removing the bias and normalizing
by a constant such that the peaks of σ[t] signal are preserved.
Change points are the set of local maxima where σ[t] ~ h[t]1

exceeds a threshold: {τ} = {t | peaks(σ[t] ~ h[t]) > λ}2.

4.2. Time Series Segment Clustering

Given change points {τ i} and time segments T i = {X[t] | τ i <
t ≤ τ i+1}, the process distribution in this time segment is
estimated by pT

i

= (Σjwj)
−1

Στ
i+1

j=τ iwjδ(x − X[j]). This
represents a weighted point cloud generated from the data
points over the time interval. Samples are weighted by a win-
dowing function that down-weights samples around transition
boundaries, mitigating the effects of segmentation errors and
non-instantaneous transitions. To this effect, we use a half
Hamming window of length 2β for samples within β of either
boundary. Samples outside this range have weights wj = 1.

The similarity matrix between time segments A[i, j] =

1Where ~ denotes the convolution operation
2 t ∈ {peaks(f [t])} ⇐⇒ f [t] > f [t− 1] & f [t] > f [t+ 1]

Algorithm 1 Wasserstein Change Point Detection and Time
Series Segment Clustering

Input: X[t], β, K, h[t], λ, {wj}βj=1

Output: {τ}, c
for all t do # CPD
pβ

−

X[t](x) = 1
β

∑β
i=1 δ(x−X[t− i])

pβ
+

X[t](x) = 1
β

∑β
i=1 δ(x−X[t+ i])

σ[t] =W2T (P β
−

X[t], P
β+

X[t])

end for
{τ} = {t | peaks(σ[t] ~ h[t]) > λ}
pT

i

= 1
Σjwj

Στ
i+1

j=τ iwjδ(x−X[j]) # TSSC
for all 0 ≤ i, j < |τ | do
A(i, j) = exp(−W2(pT

i

, pT
j

))
end for
c = SpectralClustering(A,K)

exp
(
−W2

(
pTi , pTj

))
, uses the 2-Wasserstein distance be-

tween their respective empirical distributions as the distance
measure. Given the number of action clusters K, we utilize
the similarity graph structure under the Wasserstein metric by
clustering time segments via spectral clustering [21] into the
optimal action clusters.

5. EVALUATION

5.1. Evaluation Criteria

We use the area under the ROC curve (CP-AUC) to evaluate
change point performance, following previous work [3, 11,
22]. We also report the F1 score (CP-F1) for offline multiple
CPD [23] using a margin of error δ for the acceptable offset
to the true label.

For TSSC, cluster labels are mapped onto the ground
truth labels using the standard Munkres algorithm and evalu-
ated using the Hamming distance. Performance is reported in
Tab. 1 separately using ground truth change points (GT) and
learned change points (W2T or MStat).



CP-AUC CP-F1 Label Acc
Data K β δ W2T MStat W2T MStat GT W2T MStat
Beedance 3 14 14 0.527 0.549 0.647 0.625 0.705 0.651 0.646
HASC-PAC2016 6 500 250 0.689 0.658 0.748 0.713 0.789 0.658 0.675
HASC2011 6 500 250 0.576 0.585 0.824 0.770 0.565 0.498 0.382
ECG200 2 100 50 0.585 0.584 0.637 0.582 0.864 0.708 0.716

Table 1. CPD evaluation using AUC and F1 for proposed W2T method and MStat for given number of labels K, window size
β, and detection delay δ. TSSC is evaluated with label Hamming accuracy using ground truth, W2T, and MStat change points.

5.2. Experimental Setup

We compare the performance of our algorithm to the M-
Statistic (MStat) [3], setting parameters N = 1, M = β.
For fair comparison, we employ a MStat matched filter hM [t]
using a method analogous to that outlined in Sec. 4.1. The
only hyperparameters to the CPD model are the window size
β and detection threshold λ. Since the window size controls
the width of the matched filter, we utilize domain knowledge
to set β based on the expected frequency of changes. We also
set the threshold parameter λ = 0 as the distribution of the
MStat under the null is not known. The hyperparameters,
along with the true positive detection window δ used for F1
can be found in Tab. 1. For vectored time series we computed
the W2T over each dimension and averaged the result. We
evaluate on the following datasets:

HASC-PAC2016: [24] consists of over 700 three-axis
accelerometer sequences of subjects performing six actions:
’stay’, ’walk’, ’jog’, ’skip’, ’stairs up’, and ’stairs down’. We
evaluate on the 92 longest sequences.

HASC-2011: three-axis accelerometer data from 6 ac-
tions: ’stay’, ’walk’, ’escalator up’, ’elevator up’, ’stairs up’,
and ’stairs down’.

Beedance: [25] movements of dancing honeybees who
communicate through three actions: ”turn left”, ”turn right”
and ”waggle”. We use the gradient of the data as our input.

ECG200: [2] detection of abnormal heartbeats in ECG.

5.3. Results

The proposed algorithm demonstrates robust results for CPD
and TSSC. Fig. 2 shows clear detection of change points on
HASC-PAC2016, strong efficacy of the matched filter in re-
ducing false positives, and a single label mis-classification.

The CPD performance for the W2T and MStat are com-
parable under the AUC metric, however, under the F1 metric,
W2T consistently performs better. We note that the compu-
tation complexity of the W2T (O(β log(β))) is an improve-
ment compared to that of the MStat (O(β2)) and that the OT
measures show tighter clustering in the low-dimensional em-
bedding of various simulated measures (Fig. 4).

Comparing to results reported in [22], our unsupervised
method shows competitive results with an AUC of 0.527 on
Beedance compared to supervised parametric models such as

Fig. 4. t-SNE embedding of simulated data of 200 windows
of IID 100 samples from 4 simulated distributions: N (0, 1)
(blue), L(0, 1√

2
) (orange), N (0.2, 1) (yellow), N (0, 1.2)

(purple) using Wasserstein metric, and two-sample tests:
MMD, W2T, and Kolmogorov-Smirnov

ARMA (0.537) and ARGP (0.583). We observe that since
h[t] smooths the test statistic, its inclusion decreases AUC
for a better F1 score, which we see as a positive tradeoff. For
example, when including h[t] for HASC2011, our AUC drops
from 0.630 to 0.576 while F1 improves from 0.720 to 0.824.

In terms of TSSC, using our unsupervised, distribution-
free approach, we are able to achieve a 65% label accuracy
on the Beedance data. For comparison, a state of the art su-
pervised parametric model [25] achieves an 87.7% label ac-
curacy, and a parametric unsupervised model using switching
vector autoregressive HMMs [26] achieves a label accuracy
of 66.8%. HASC also shows strong performance given that a
total of six possible assignments were available.

6. DISCUSSION

We propose a distribution-free, unsupervised approach to
CPD and TSSC for time-series data. In our experiments,
we run the CPD in an offline manner. Applied in an online
setting, the minimum detection delay would be 2β.

We approach CPD and TSSC with a weak set of assump-
tions: that change points occur when the process distribution
changes, and actions can be clustered based on their respec-
tive empirical distributions. However, clearly time series data
is rarely IID. In future work, we will expand these methods
for CPD and TSSC beyond IID assumptions.
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