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ABSTRACT

Speech-based degree of sleepiness estimation is an emerging re-
search problem. In the literature, this problem has been mainly
addressed through modeling of low level of descriptors. This paper
investigates an end-to-end approach, where given raw waveform as
input, a neural network estimates at its output the degree of sleepi-
ness. Through an investigation on the continuous sleepiness sub-
challenge of the INTERSPEECH 2019 Computational Paralinguistics
Challenge, we show that the proposed approach consistently yields
performance comparable or better than low level descriptor-based,
bag-of-audio-words-based and sequence-to-sequence autoencoder
feature representation-based regression systems. Furthermore, a
confusion matrix analysis on the development set shows that, un-
like the best baseline system, the performance of our approach is
not centering around a few degrees of sleepiness, but is spread
across all the degrees of sleepiness.
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1 INTRODUCTION

Assessing sleepiness is relevant in scenarios, such as in preventing
accidents or in evaluating when to recommend a break. Further-
more, sleep deprivation increases the mortality risk. To put this
relevance into perspective: in 2016, the American think tank RAND
reported an estimated 138 billion US $ damage to Japanese econ-
omy (2.92% of its GDP) caused by sleepiness at work, which is why
companies, among other things, offer incentives to sleep more than
six hours per night [6]. Although sleep is a multi-modal phenome-
non, speech is one of the cheapest modalities that can be captured,
most notably in a non-intrusive manner. Sleepiness can be sub-
jectively assessed on the Karolinska Sleepiness Scale (KSS) [21],
which ranges from 1 (extremely alert) to 9 (very sleepy). This paper
focuses on developing objective or automatic methods to predict
sleepiness.

In [19], Schuller et al. review contributions to the Interspeech
2011 Speaker State Challenge in two sub-challenges on alcohol
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intoxication and sleepiness. These medium term speaker states,
meaning effects that usually last a few hours, are expected to gen-
erally affect motor coordination processes and speech of cognitive
processing. This manifests in terms of changes in prosody such as
monotonic and flattened intonation, shifted speech rate [10, 23], in
articulation, such as slurred, less crisp pronunciation, mispronunci-
ations [2] and in speech quality such as tensed, nasal, or breathy
speech [9]. In addition, there could be linguistic dimensions, such
as word repetition. The baseline system for the challenge extracted
low-level descriptors (LLDs) such as short-term energy, short-term
spectrum, voice related features and their functionals and classified
them using support vector machine to predict sleepiness. In [7],
Honig et al. analyzed the LLDs extracted from the Interspeech 2011
Speaker State Challenge sleepiness data, which is labeled in terms
of KSS. They found different trends for male and female. More pre-
cisely, male sleepiness correlated more with spectral changes such
as less canonical pronunciation, whilst female sleepiness correlated
more with lowered pitch.

In the recent years, with the advances in deep learning, ap-
proaches have emerged where task-related information are di-
rectly learned from raw speech signals using convolutional neu-
ral networks (CNNs) in an end-to-end manner, i.e. without any
short-term spectral processing [5, 11, 12, 14, 18, 22, 24]. This pa-
per investigates the use of such an approach for the degree of
sleepiness estimation. We investigate different methods to incor-
porate prior knowledge: (a) constraining how the first convolution
layer processes the speech signal, (b) filtering the speech signal to
mainly model voice source related information and (c) integrating
speech production knowledge through transfer learning. We vali-
date these methods against the state-of-the art LLD-based, bag-of-
audio-words-based and sequence-to-sequence autoencoder feature
representation-based approaches on the continuous sleepiness sub-
challenge of the INTERSPEECH 2019 Computational Paralinguistics
Challenge [20].

The remainder of the paper is organized as follows: Section
2 gives an overview of the used data and the baseline systems.
Section 3 presents the proposed methods. Section 4 summarizes
our results and presents an analysis of the trained neural networks.
Finally, Section 5 concludes the paper.

2 EXPERIMENTAL PROTOCOL AND
BASELINE SYSTEMS

The continuous sleepiness sub-challenge corpus consists of 5564
utterances (5hours 59 minutes) in the training set, 5328 utterances
(5hours 44 minutes) in the development set and 5570 utterances
(5hours 58minutes) in the test set from a total of 915 subjects (364
females, 551 males). No speaker IDs or speaker genders information
are provided. Speech data consists of different reading and speaking
tasks as well as narrative speech. According to the KSS scale, the



labels range from 1 to 9. True labels were averaged between self-
assessment and two expert ratings. Spearman’s cross-correlation
coefficient, denoted as p, is used as the evaluation metric.

The challenge provided three support vector regression systems
based different features, namely, the ComParE 2013 feature set,
which contains 6373 LLDs and functionals, histogram representa-
tions of clustered LLDs, known as bag-of-audio-words (BoAW) and
feature representations from sequence-to-sequence auto-encoders
(S2SAE) trained on Mel-spectrograms. For each of these feature sets,
systems with different configurations were built. The best baseline
results on the development and the test set are shown in Table 2.
For further details, the reader is referred to [20].

3 PROPOSED SYSTEMS

We used the raw-speech based CNN framework originally devel-
oped for speech recognition [15], and later extended to other tasks
such as speaker verification [11], gender identification [8], pre-
sentation attack detection [12] or depression detection [5]. In this
framework, as illustrated in Figure 1, the network consists of N
convolution layers (Conv), maximum pooling (MaxP) and ReLU
activations followed by a multilayer perceptron (MLP). At the out-
put, the CNN predicts the posterior probability of the classes per
frame. Frame-level posterior probabilities are then averaged to get
per-utterance posterior probabilities.

Figure 2 illustrates the processing at the first convolution layer.
kW denotes the kernel width in samples, dW denotes the stride or
kernel shift in samples, Wseq in seconds is the segment of speech
that is processed at one time frame and ny is number of filters in
the convolution layer. In [11, 16], it has been found that by modi-
fying kW different information related to the speech production
mechanism can be learned. More precisely, if kW covers a signal
length of about 20 ms (segmental), the first convolution layer tends
to model voice source related information. Similarly, If kW cov-
ers a lengthsignal of about 2 ms of length (sub-segmental), the
first convolution layer tends to model vocal tract system related
information, such as formant information.

During training, both convolutional layer and MLP parameters
are estimated using a cost function based on cross entropy. During
testing, the frame level posterior probabilities are averaged and a
decision is made.

3.1 Raw-speech CNN

We trained randomly initialized CNNs to predict the degree of
sleepiness. The input to the CNN wseq4 was 250ms length signal,
which was shifted by 10ms. Table 1 presents the two architectures
used based on the first convolution layer kernel width. Depending
upon the length of the filters in the first convolutional layer, we
distinguish (a) sub-segmental modelling (subseg), where kW = 30,
span 2ms, equivalent to less than 1 pitch period, and (b) segmental
modelling (seg), where kW = 300 spanning 20ms, equivalent to 1
to 5 pitch periods. The classification stage consists of one hidden
layer with 100 units.

3.2 Zero-frequency filtered signals

As discussed in Section 1, sleepiness leads to changes in vocal
source characteristics, such as changes in fundamental frequency.

Anon.

Table 1: CNN architectures. Np: number of filters, kW: kernel
width, dW: kernel shifts, MP: max-pooling.

Model | Layer Conv MP
Ny kW dW

subseg | 1 128 30 10 2

2 256 10 5 3

3 512 4 2 -

4 512 3 1 -
seg 1 128 300 100 2

2 256 5 2 -

3 512 4 2 -

4 512 3 1 -

In order to incorporate that information, we took inspiration from
arecent work that showed that voice source related information for
depression detection can be modeled by filtering the speech signal
through a zero frequency filter (ZFF) [13] and feeding the filtered
processed signal as input to CNNs [5].

3.3 Integrating speech production knowledge

As discussed in Section 1, sleepiness can induce changes in the
articulation process, i.e. in the speech production process resulting
in slurry speech or less crispy pronunciation or mispronunciation.
In order to integrate articulatory information, we investigated a
transfer learning framework where the CNN is first trained to pre-
dict broad phonetic features or articulatory features (AFs), namely,
manner of articulation (degree of constriction), place of articulation
(place of constriction), height of articulation (height of the tongue or
roundedness) and vowel. These AFs are inspired from a recent work
on articulatory feature based speech recognition [17]. To predict
the degree of sleepiness, we use the AF-initialized CNNs, replace
the output layer by an output layer consisting of the nine sleepiness
categories and the CNN is trained again. Figure 3 summarizes this
procedure.

In order to train the articulatory features, transcription of the
speech signal is required. In the challenge data, no transcription
has been provided so we used the AMI corpus [3], which consists
of 77 hours of speech, from which we use a 70 hour clean subset
of the training set, which is a standard practice in the Kaldi recipe.
From this data, we used Kaldi to train HMMs for context-dependent
phones, where the HMM states were jointly modelled by using
subspace GMMs. The corresponding frame-to-phone alignments
were then used to train four different AF-CNNs for each AF category
(height, manner, place and vowel). The model architecture is the
same as the sub-segmental architecture described in Section 3.1,
except in this case, the single hidden layer MLP contains 1024
hidden units. We then adapted the resulting four AF-CNNs on the
sleepiness data.
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Figure 1: Illustration of our CNN architecture.
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Figure 2: Illustration of first convolution layer processing.

3.4 Fusion of scores with an MLP

We also investigated combining different systems. For that we used
an MLP to fuse scores from different systems. The MLP has one hid-
den layer with 128 nodes with ReLU activation, a dropout layer with
0.1% and the output layer predicts the nine sleepiness categories.

Similar to the baseline system studies reported in [20], we con-
ducted studies with two experimental setups: (a) train the CNNs
on the training data and test on development data and (b) train the
CNNs on both training and development data and test on the test
set. The networks were implemented with the Keras deep learning
library [4] with TensorFlow as backend [1]. In each case, 5% of the
data was used for validation. We used a decaying learning schedule
which halves the learning rate between 10e—3 and 10e—7 whenever
the validation loss stopped reducing.

4 RESULTS & ANALYSIS

Table 2 compares the performance of the proposed systems with
the baseline systems. It is important mention that the challenge
allows only five trials on the test set. So only five results for the
proposed systems are reported.

On the first experimental setup i.e. training on the training set
and evaluating on the development set, it can be observed the pro-
posed raw waveform modeling methods perform comparable or
better than the best baseline systems, except for sub-segmental
modeling of ZFF signal. We can observe that score fusion leads
to improvement in performance. Thus, indicating that different

Table 2: Results of all the presented CNNs on the INTER-
SPEECH 2019 sleepiness sub-challenge data in Spearman’s
cross-correlation coefficient p. A + denotes a fusion using
the MLP.

Dev Test
Baseline systems
ComParE 2013 251 314
COMPARE2013BoAWs 250 .304
S2SAE_704B 261 310
Fusion (3-best Majority Vote) - .343
Raw waveform CNNs
subsegrawy 280  .201
Segraw 274 222
subseg, s 244 -
seg.ff .252 -
AF-CNNs
height .267 -
manner .292 -
place 262 -
vowel 295 312
Fusion

subsegrqw + segraw + segzrf 303 -

manner + place + vowel 304 -
manner + place 311 -
manner + vowel 317 325
manner + segraw 315 -
manner + vowel + segrgw 319 -

manner + segrgw + ComParE 329 -
manner + segrqw + BoAWso9 344 321

CNN s are capturing complementary information. When compar-
ing on the second experimental setup, i.e. training on train and
development set and evaluating on the test set, we can see that raw
waveform CNNs not necessarily generalize. However, the AF-CNN
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Figure 3: Overview of the procedure of transfer learning for sleepiness prediction from CNNs that where initially trained to

predict articulatory features on the AMI corpus.

and fusion systems generalize well. This shows that integrating
speech production knowledge is indeed aiding in predicting degree
of sleepiness.

We performed a confusion matrix analysis of the results ob-
tained in the first experimental setup. Figure 5 shows the confusion
matrix of our system manner + wvowel. Unlike the baseline sys-
tem [20], it can be observed that classifications are spread over
all degrees of sleepiness. We have highest accuracy for KSS rat-
ing of 3 and 8, meaning that our system is able to differentiate
the extreme sleepiness categories well, whereas accuracy is lower
for KSS ratings between 4 and 6, which are naturally difficult to
distinguish. Figure 5 shows the confusion matrix of our system
manner + segrqw + BOAWs50. The confusion matrix has less val-
ues along the diagonal meaning less correct classifications. However
the overall Spearman’s correlation is higher.

Spearman CC .317

19 0 11 15 3 15 17 0 0 0

249 2 27 78 28 131 87 41 73 19

3{20 64 46 119 52
4416 43 46 106 73
2
o5123 43 30 101 79 88
=
=

64 17 34 97 37 128 95 35

1 2 3 4 5 6 7 8 9
Predicted label

Figure 4: Confusion matrix of our fusion of the CNNs manner

and vowel.

To get an impression of what frequency regions the first convolu-
tional layer is focusing on, we computed the cumulative frequency

Spearman CC .344

=
o

14 8 1 20 17 1! 0 0

N
w

63 47 12 79 44 78 16

1 26 . 88 21 76 115 95

w

4417 112 70 10 76 90 123 129 97
2
E 5431 96 68 5 102 112 130 85
E]
- 64 18 52 54 17 129 128 125 37
71 4 59N 19 8 61 81 86
8426 20 13 2 21 18 101
94 1 1 1 0 4 9 44 28

1 2 3 4 5 6 7 8 9
Predicted label

Figure 5: Confusion matrix of our best system: A fusion
of the CNNs manner and segrq. and the SVR output from
BOAWs.

response (CFR) as follows:

Nr
Feum = ) Fi/IIFkllz (1)
k=1

Ny denotes the number of filters and Fy. is the frequency response
of filter fi.. Figure 6 compares the CFR for raw waveform based
systems. When modeling raw sub-segmental speech, stronger em-
phasis is given to frequencies around 1000 Hz, whilst the segmental
system’s CFR shows a few distinctive peaks well below 1000 Hz
that could be related to fundamental frequency and formants. In
the case of ZFF signals, the sub-segmental system has emphasis
around 500 Hz, whereas the segmental system emphasizes very low
frequencies.

Figure 7 shows the CFR for AF-CNNs. It can be observed that
there are differences in the information modeled by the CNNs for
different AFs. Furthermore, when compared to raw waveform CNNs
(6), the CFRs are very different, i.e. emphasis is given to frequencies
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Figure 6: Cumulative frequency responses of first convolu-
tional layer raw waveform CNNs.

above 1000 Hz. These differences explain the performance gains
obtained in the fusion systems.
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Figure 7: Cumulative frequency responses of first convolu-
tional layer from AF-CNNs.

5 CONCLUSIONS

This paper investigated different ways to estimate the degree of
sleepiness from raw waveform by implementing a CNN to model
relevant information directly from the speech signal. We evaluated
our methods on the continuous sleepiness sub-challenge of the
INTERSPEECH 2019 Computational Paralinguistics data. Our in-
vestigations showed that integrating speech production knowledge
by modeling articulatory features yields better systems, when com-
pared to simply modeling raw waveforms. The raw waveform CNNs
and the AF-CNNs focus on different frequency information, which
could be exploited through score fusion. Among the AF-CNNss, the
manner CNN and vowel CNN yields the best systems. The score
fusion studies and the first convolution layer analysis shows that
the AF-CNNs capture complementary information. Finally, our ex-
perimental studies show that the proposed end-to-end approach
can yield systems comparable to or better than the conventional
short-term speech processing based approaches.
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