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ABSTRACT

In Mandarin text-to-speech (TTS) system, the front-end text
processing module significantly influences the intelligibility
and naturalness of synthesized speech. Building a typical
pipeline-based front-end which consists of multiple individ-
ual components requires extensive efforts. In this paper, we
proposed a unified sequence-to-sequence front-end model for
Mandarin TTS that converts raw texts to linguistic features di-
rectly. Compared to the pipeline-based front-end, our unified
front-end can achieve comparable performance in polyphone
disambiguation and prosody word prediction, and improve in-
tonation phrase prediction by 0.0738 in F1 score. We also im-
plemented the unified front-end with Tacotron and WaveRNN
to build a Mandarin TTS system. The synthesized speech by
that got a comparable MOS (4.38) with the pipeline-based
front-end (4.37) and close to human recordings (4.49).

Index Terms— text-to-speech front-end, sequence-to-
sequence, semi-auto-regressive, joint modeling

1. INTRODUCTION

In Mandarin text-to-speech (TTS) synthesis, the front-end
casts great influence on the intelligibility and naturalness of
synthesized speech. It extracts various linguistic features
from the raw text, aiming to provide enough information for
the back-end to synthesize close-to-human speech.

The typical Mandarin TTS front-end is a pipeline-based
system, consist of a series of text processing components,
such as text normalization (TN), Chinese word segmentation
(CWS), part-of-speech (POS) tagging, grapheme-to-phoneme
(G2P) conversion, and prosody prediction. This structure en-
ables us to divide and conquer the complicated front-end task.
However, this serial structure also brings several problems.
One is error propagation, that small errors in single compo-
nent flow to its downstream components, and can severely
damage final results way beyond just adding up the individ-
ual errors. The second is the complex feature engineering and
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data labeling work, as each component requires different in-
put features and output labels. Another is that front-end com-
ponents need to be trained and optimized separately, which
causes a misalignment in optimization and make the whole
training procedure much complicated.

To address the issues above, we proposed a unified
sequence-to-sequence front-end structure, which predict
phoneme, tone, and prosody sequences from the raw text di-
rectly. Compared to the pipeline-based front-end, our unified
front-end could achieve comparable performance in poly-
phone disambiguation and prosody word prediction, and
boost intonation prosody prediction by 0.0738. When imple-
mented with Tacotron [1] and WaveRNN [2] in a Mandarin
TTS system, the synthesized speech by the unified front-end
got a 4.38 mean opinion score (MOS), which is comparable
with the pipeline-based front-end (4.37) and close to the hu-
man recordings (4.49). The main contribution of this work is
to provide a unified front-end structure to build a high-quality
Mandarin TTS system more quickly and easily.

2. BACKGROUND

In this section, we briefly review some major components in
Mandarin TTS front-end, including TN, CWS, POS tagging,
G2P, and prosody prediction.

2.1. Text Normalization

Text normalization (TN) is the process of converting non-
standard words into spoken-form words with unambiguous
pronunciation. Traditional TN is rule-based, but the TN ap-
plied in this work is a novel hybrid method [3]] and the same
for all experiments.

2.2. CWS and POS tagging

Unlike the English language, Mandarin is a character-based
language, so we need CWS to extract word boundaries from
the raw text. Accurate word boundaries are the key to build
high-precision POS, G2P, and prosody prediction models, and



CWS errors are likely to decrease the intelligibility of the syn-
thesized speech. However, the ambiguity resolution in CWS
is always a controversial issue [4]. POS tagging takes an
important role in polyphone disambiguation, and inaccurate
POS usually results in incorrect polyphone pronunciations.
The outputs of CWS and POS are not used directly by the
front-end in Mandarin TTS, but they are crucial auxiliary fea-
tures in G2P and prosody prediction tasks. Therefore, we add
an auxiliary module to extract latent representations of CWS
and POS in our proposed model.

2.3. Prosody Prediction

The prosody structure in Mandarin TTS determines the nat-
uralness to a great extent, which has been proved in previ-
ous researches [, [6]. It is usually divided into 3 levels (from
low to high) - prosody word (PW), prosody phrase (PP), and
intonation phrase (IP), where the higher level is based on
the lower level. Typical prosody prediction methods include
rule-based models and statistical models like CRF [7], and
RNN [5]. Recently, Multi-Task Learning (MTL) architecture
is also applied in prosody prediction [8]. In our proposed
model, we predict prosody labels with phoneme and tone la-
bels together within a joint modeling structure.

2.4. Grapheneme-to-Phoneme

As described in [9]], the main objective in Mandarin G2P is
polyphone disambiguation(PD), which affect the speech qual-
ity significantly in TTS. Additionally, tone sandhi and Erhua
are also the key issues in the intelligibility of Mandarin TTS.
The most popular method for PD is to apply the ME model
for each polyphone [10]. Using a unified model for all poly-
phones were also investigated [[L1], recently. However, all
these methods can only process one polyphone at a time, and
need post-fixing rules for tone sandhi and Erhua. In our pro-
posed model, the PD, tone sandhi, and Erhua issues in a se-
quence of text can be resolved at once.

3. MODEL ARCHITECTURE

In this section, we proposed a unified sequence-to-sequence
front-end model, to generate phoneme, tone, and prosody se-
quences from raw text inputs directly. It helps to simplify
the Mandarin TTS front-end pipeline and avoids complicated
post-fixing rules in tone sandhi and Erhua. The idea was de-
rived from [12} 1} [13}114].

3.1. Data flow

As shown in Figure[I] the raw input text is first converted to a
sequence of 300-dimension vectors by a pre-trained character
embedding mapping. The character embedding mapping is
generated from a Word2Vec [15] model, which was trained by
a 1Gb Chinese corpus from Wikipedia in character level. The
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Fig. 1. Structure of the unified sequence-to-sequence front-
end

character embedding sequence is then passed to an auxiliary
module, and its outputs are one-hot vectors for CWS and POS
tags, where CWS has 4 tags (B, M, E, S) and POS has 99 tags.

The dense presentation before the CRF/Softmax layer in
the auxiliary module is concatenated with the original charac-
ter embedding as the inputs for the main module. Compared
to the classification outputs from the auxiliary module, this
representation can mitigate the error-propagation issue, and
makes our model more robust.

Outputs of the main module are phoneme, tone, and
prosody sequences, which are used as the linguistic features
for the back-end in Mandarin TTS. A stop token is also gen-
erated here, to terminate the decoder prediction in inference.

3.2. Auxiliary Module

The auxiliary module acts as a feature extractor to extract
CWS and POS representations from raw text inputs, which
are expected to provide more information for the main mod-
ule. Inspired by [16, [17], we proposed two auxiliary mod-
ule structures - the dilated-CNN (DCNN) and the transformer
encoder (TE). The DCNN model consists of 3 dilated CNN
layers, with kernel size=5, filter number=128, and dilation
rate=1,2,4 respectively. The TE model consists of a 256-unit
LSTM layer and 1 self-attention block with 8 heads. Posi-
tional embedding is applied to the TE as well.

3.3. Main Module

The main module is a encoder-decoder structure with Gaus-
sian Mixture Model(GMM) attention [18]]. In the encoder
part, there is a 128-unit LSTM layer, followed by a 32-unit



projection layer. The outputs of the projection layer are fed
into 3 blocks of self-attention with 8 heads. The encoder con-
verts the concatenation of the character embedding and dense
CWS&POS representations to hidden feature representations,
which the decoder consumes to predict the phoneme, tone,
and prosody labels.

In the decoder part, there is a 1024-unit LSTM layer with
1 self-attention block with 8 heads. During the inference
stage, semi-auto-regressive (SAR) method is applied in each
decoding step, to improve decoder’s performance. With the
inspiration of [[14], the full decoded output sequence is then
passed into a post-net, which comprises 3 CNN layers with
kernel size=5 and filter number=128. The post-net generates
a residual, which is added to decoder’s predictions, to pro-
mote the final performance. Joint modeling is applied in this
part, to generate phoneme, tone, and prosody sequences to-
gether.

We used the GMM attention rather than local sensi-
tive attention in our model, as it shows better monotonicity
and alignments between the inputs and outputs. Different
from [18]], we replace exponential activation with softplus
activation in GMM attention, which is expected to increase
the stability substantially during training [19].

3.4. Semi Auto Regressive (SAR) Inference

In the inference stage, the common method is to use the auto-
regressive (AR) method to predict results at each step. How-
ever, in our task, the phoneme only needs to be predicted
for polyphones and can be identified for non-polyphones in
advance. In this case, we proposed a semi-auto-regressive
(SAR) method to improve the decoding performance, where
the correct phoneme replaces the predicted phoneme at every
non-polyphone step. A decoder mask is generated from the
raw input text to tell the decoder helper whether the current
step is for polyphones or not. The prediction for tones and
prosody labels keeps AR behavior.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

We use the following datasets:

People’s Daily Corpus: 940,000 Mandarin utterances with
word boundaries and POS tags, generated from Peo-
ple’s Daily (2004) corpus, released by Peking Univer-
sity. It is used for auxiliary-module training, validation,
and test with the ratio of 8:1:1.

Internal Corpus: Two groups of Mandarin corpus with
prosody intervals and Pinyin labels. One contains
117,967 utterances for the unified front-end training
and validation with the ratio of 9:1. The other is the
golden test set with 49,466 utterances.

4.2. Training and Test

Due to the post-net structure described in Section we op-
timize two group of losses. One is the before-post-net loss,
consist of 4 cross-entropy (CE) losses. The other is the after-
post-net loss, consists of 3 negative log-likelihoods (LL). The
final loss function becomes:

Z {CE(mbeforez m) + CE(ﬁbefora ﬁ)
m,n,k,s€D
+CE(kpefore, k) + CE(5,8) + LL(Mafter, ™)
+LL(Fragters 1) + LL(kaprer, k) } (1)

loss =

where D represents the training corpus and M, N, K, S rep-
resent phoneme, tone, prosody sequences, and the stop token
respectively.

We first train the auxiliary module with 80% of the Peo-
ple’s Daily corpus, and then fine-tune the whole unified front-
end with 90% of the internal corpus. In the fine-tuning stage,
we apply the scheduled sampling method to increase its ro-
bustness to the wrong prediction result in the previous time-
step, as our experiments showed that the teacher-forcing train-
ing would cause the unified front-end to generate unaccept-
able results in the test.

In the test stage, we used 10% of the People’s Daily cor-
pus for the auxiliary module and the golden test set from the
internal corpus for the unified front-end. Our proposed semi-
auto-regressive method was applied in this stage.

4.2.1. System Configuration

When training the auxiliary module, we set the dropout rate
to 0.1, and apply the label smoothing method with ratio=0.1.
The batch bucketing method is used to speed up the training
process, and 11 buckets are set with an upper boundary of 200
for input texts.

When fine-tuning the unified front-end, the same dropout
and label smoothing settings are set as the auxiliary mod-
ule. Batch bucketing is applied with 13 buckets and an up-
per boundary of 90, which aligns with the setting used in our
Tacotron training. Scheduled sampling is implemented in the
decoder, which starts at 20,000 step with teacher forcing ra-
tio decaying from 1 to 0 in 50,000 steps . The start point
20,000 is a empirical number for our front-end to converge
under teacher forcing.

4.3. Results and Analysis
4.3.1. Selection of Auxiliary Module

We carried out experiments on two auxiliary module struc-
tures with different outputs. From Table[T]it can be found that
the DCNN got the highest F1 score in the single CWS task,
and the TE performed better in the single POS task and the
CWS + POS task. These 3 settings were implemented in our
unified front-end in the following experiment.



Task CWS POS
Model DCNN TE DCNN TE
CWS (Block F1) | 0.9738 0.9683
POS (tagging acc) - -

CWS+POS
DCNN TE
0.9460  0.9503
0.9014  0.9097

0.9056  0.9199

Table 1. Auxiliary-Module Experiment Results

) G2P Prosody
Settings accuracy(%) F1 score
PW PP 1P
G2P baseline 95.92 - - -
Prosody baseline - 0.9497 0.8089 0.8719
Ours (no auxiliary) 85.14 0.8795 0.6670 0.7085
Ours (CWS auxiliary) 95.07 0.9471 0.7819 0.9259
Ours (POS auxiliary) 96.77 0.8977 0.8043 0.9384
Ours (CWS+POS auxiliary) 96.56 0.9517 0.7745 0.9457

Table 2. The G2P accuracy represents the polyphone disam-
biguation accuracy. The prosody F1 score in PP, PW and IP
indicates the stacked prosody tagging F1 score.

4.3.2. Evaluation of the Unified Front-end

We fine-tuned the unified front-end with three auxiliary mod-
ule settings in Section4.3.1] In comparison, we used compo-
nents from the pipeline-based front-end as baselines, which
achieve SOTA performance in prosody prediction and G2P
conversion respectively. The prosody baseline is a sequence
labeling model with BERT boosting, and the G2P baseline is
a BERT+CNN model. All the models were trained and tested
using the People’s Daily corpus described in Section[4.1]

One can be seen from Table [2| that the auxiliary module
is essential to our front-end’s performance, which proves
the effect of CWS and POS representations. Compared to
baselines, we found that our front-end with POS and with
CWS+POS auxiliary module got slightly improvement in
polyphone disambiguation. As for prosody prediction, our
front-end with CWS+POS auxiliary module obtained similar
performance in PW prediction, and our front-end with any
auxiliary module achieved significantly higher F1 score in
IP prediction. However, the prosody baseline still performs
the best in PP prediction. According to the test results, our
front-end with CWS+POS auxiliary module can be regarded
to have comparable performance with the baselines.

4.3.3. Use SAR in the Unified Front-end

In order to verify the effect of SAR, we did experiments us-
ing SAR in both training and evaluation stage and compared
with scheduled sampling and auto-regressive (AR) methods.
Table [3] shows that despite the training methods, using SAR
in evaluation can improve G2P accuracy significantly and
make positive effects on prosody prediction as well when
compared to the AR method. However, applying SAR in
training severely degrades our front-end’s performance. This
is likely because for standalone polyphones, SAR always
makes the polyphone step to see correct phoneme inputs from

.. . G2P Prosody
Training Evaluation accuracy(%) F1 score
PW PP P
Scheduled Sampling AR 93.38 0.9423  0.7699  0.9334
SAR 96.56 0.9517 0.7745 0.9457
SAR AR 70.41 0.8818 0.6721  0.8954
SAR 85.92 0.8828 0.6733  0.8955

Table 3. Semi-Auto-Regressive Experiment Results.

System MOS

Ground Truth  4.49 +0.20
P-system 4.37£0.27
U-system 4.38 £0.27

Table 4. Mean option scores(MOS) with 95% confidence in-
tervals. Ground truth represents the human recordings. P-
system is the one with the pipeline-based front-end, and U-
system is the other one with our unified front-end.

the previous step, and when there are an increasing number of
continuous polyphones in the test dataset, our front-end may
generate incorrect phoneme if the phoneme from the previous
step is already incorrect.

4.3.4. Cascade with TTS Back-end

We implemented two front-end models, the pipeline-based
and the unified (CWS+POS auxiliary) with Tacotron [[1] and
WaveRNN [20] in two Mandarin TTS systems separately. In
the training stage, Tacotron was trained using linguistic fea-
tures from the corresponding front-end. In the synthesis stage,
all the utterances were normalized by TN [3] in advance. Ta-
ble ] shows that U-system can got comparable MOS with P-
system, which is also close to the human recordings.

5. CONCLUSION

In this paper, we proposed a unified sequence-to-sequence
front-end model for Mandarin TTS, to significantly simplify
the Mandarin TTS front-end workflow. We also introduced
a semi-auto-regressive inference method to improve the per-
formance of our unified front-end. The experiment results
show that our unified front-end can achieve comparable or
better performance than the pipeline-based front-end in G2P
and most prosody prediction tasks. Implementing our uni-
fied front-end in a Mandarin TTS system with Tacotron
and WaveRNN can synthesize close-to-human speech with
4.38 MOS, and get comparable performance with using the
pipeline-based frontend.

The potential future work includes using BERT to replace
current character embedding and applying the unified front-
end to other languages. Additionally, how to apply a flexible
badcase-fixing schedule and improve the controllability of the
unified front-end also need further investigations.
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