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ABSTRACT

Keyword Spotting (KWS) enables speech-based user interac-
tion on smart devices. Always-on and battery-powered ap-
plication scenarios for smart devices put constraints on hard-
ware resources and power consumption, while also demand-
ing high accuracy as well as real-time capability. Previous
architectures first extracted acoustic features and then applied
aneural network to classify keyword probabilities, optimizing
towards memory footprint and execution time.

Compared to previous publications, we took additional
steps to reduce power and memory consumption without
reducing classification accuracy. Power-consuming audio
preprocessing and data transfer steps are eliminated by di-
rectly classifying from raw audio. For this, our end-to-end
architecture extracts spectral features using parametrized
Sinc-convolutions. Its memory footprint is further reduced
by grouping depthwise separable convolutions. Our network
achieves the competitive accuracy of 96.4% on Google’s
Speech Commands test set with only 62k parameters.

Index Terms— Keyword Spotting, Wake-Word Detec-
tion, Speech Commands, Sinc-Convolutions, Raw Audio

1. INTRODUCTION

Speech processing enables natural communication with smart
phones or smart home assistants, e.g., Amazon Echo, Google
Home. However, continuously performing speech recog-
nition is not energy-efficient and would drain batteries of
smart devices. Instead, most speech recognition systems pas-
sively listen for utterances of certain wake words such as “Ok
Google”, “Hey Siri”, “Alexa”, etc. to trigger the continuous
speech recognition system on demand. This task is referred to
as keyword spotting (KWS) or wake-word detection. There
are also uses of KWS where a view simple speech commands
(e.g. “on”, “off”) are enough to interact with a smart device.
Conventional hybrid approaches to KWS first divide their
audio signal in time frames to extract features, e.g., Mel Fre-
quency Cepstral Coefficients (MFCC). A neural net then es-
timates phoneme or state posteriors of the keyword Hidden
Markov Model in order to calculate the keyword probability
using a Viterbi search. The wake-word is then recognized

when the keyword probability reaches a predefined threshold.
In recent years, end-to-end architectures gained traction that
directly classify keyword posterior probabilities based on the
previously extracted features, e.g., [ 12} (3,4} /5.

Typical application scenarios imply that the device is
powered by a battery, and possesses restricted hardware re-
sources to reduce costs. Therefore previous works optimized
towards memory footprint and operations per second. In
contrast to this, we tune our neural network towards energy
conservation in microcontrollers motivated by obervations
on power consumption, as detailed in Sec. To extract
meaningful and representative features from raw audio, our
architecture uses parametrized Sinc-convolutions (SincConv)
from SincNet [6]. We use Depthwise Separable Convolu-
tions (DSConv) [7, [8]] that preserve time-context information
while at the same time compare features in different chan-
nels. To further reduce the number of network parameters,
which is key for energy efficiency, we group DSConv-layers,
a technique we refer to as Grouped DSConv (GDSConv).

Our key contributions are:

e We propose a neural network architecture tuned to-
wards energy efficiency in microcontrollers grounded
on the observation that memory access is costly, while
computation is cheap [9].

e Our keyword-spotting network classifies on raw audio
employing SincConvs while at the same time reducing
the number of parameters using (G)DSConvs.

e Our base model with 122k parameters performs with
the state-of-the-art accuracy of 96.6% on the test set of
Googles Speech Commands dataset, on par with TC-
ResNet [4] that has 305k parameters and requires sepa-
rate preprocessing. Our low-parameter model achieves
96.4% with only 62k parameters.

2. RELATED WORK

Recently, CNNs have been successfully applied to KWS [2, 3}
4]. Zhang et al. evaluated different neural network architec-
tures (such as CNNs, LSTMs, GRUs) in terms of accuracy,
computational operations and memory footprint as well as
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their deployment on embedded hardware [2]. They achieved
their best results using a CNN with DSConvs. Tang et al. ex-
plored the use of Deep Residual Networks with dilated convo-
lutions to achieve a high accuracy of 95.8% [3]], while keeping
the number of parameters comparable to [2]. Choi et al. build
on this work as they also use a ResNet-inspired architecture.
Instead of using 2D convolution over a time-frequency repre-
sentation of the data they convolve along the time dimension
and treat the frequency dimension as channels [4].

This bears similarities with our approach as we are using
1D convolution along the time dimension as well. However,
all the approaches mentioned classify from MFCCs or sim-
ilar preprocessed features. Our architecture works directly
on raw audio signals. Previous work has been done with
using neural networks for directly modeling raw audio for
wake word detection in a hybrid approach [10]. There is,
however, a recent trend in the speech domain towards using
CNNSs on raw audio data directly in an end-to-end approach
[6, 1114 (12} [13]. Ravanelli et al. present an effective method
of processing raw audio with CNNs, called SincNet. Ker-
nels of the first convolutional layer are restricted to only learn
shapes of parametrized sinc functions. This method was first
introduced for Speaker Recognition [6] and later also used for
Phoneme Recognition [[11]. To the best of our knowledge, we
are the first to apply this method to the task of KWS.

The first convolutional layer of our model is inspired by
SincNet and we combine it with DSConv that has first been
introduced in the domain of Image Processing [8} [14] and
applied to KWS in [2] and neural machine translation [7]].
Kaiser et al. [[7]] also introduce the “super-separable” convo-
lution, a DSConv that further reduces the number of parame-
ters using grouping. The idea of Grouped Convolutions was
first used in AlexNet [[15]] to reduce parameters and operations
and to enable distributed computing of the model over multi-
ple GPUs. We denominate the combination of grouping and
DSonv as GDSConv in our work and use it for our smallest
model.

3. MODEL

3.1. Keyword-Spotting on Battery-Powered Devices

Typical application scenarios for smart devices imply that the
device is powered by a battery, and possesses restricted hard-
ware resources. The requirements for a KWS system in these
scenarios are (1) very low power consumption to maximize
battery life, (2) real-time or near real-time capability, (3) low
memory footprint and (4) high accuracy to avoid random ac-
tivations and to ensure responsiveness.

Regarding real-time capability, our model is designed
to operate on a single-core microcontroller capable of 50
MOps per second [2]. We assume that in microcontrollers
the memory consumption of a KWS neural network is asso-
ciated with its power consumption: Reading memory values

contributes most to power consumption which makes re-use
of weights favorable. While in general large memory mod-
ules leak more power than small memory modules, one read
operation from RAM costs far more energy than the corre-
sponding multiply-and-accumulate computation [16} [9]. In
addition to the parameter-reducing approach in this work,
further steps may be employed to reduce power consump-
tion such as quantization, model compression or optimization
strategies regarding dataflows that depend on the utilized
hardware platform [[16} 9} 17, [18]].

3.2. Feature Extraction using SincConvs

SincNet [6] classifies on raw audio by restricting the fil-
ters of the first convolutional layer of a CNN to only learn
parametrized sinc functions, i.e., sinc (z) = sin(z)/x. One
sinc function in the time domain represents a rectangular
function in the spectral domain, therefore two sinc functions
can be combined to an ideal band-pass filter:

gn, f1, fa] = 2fasinc (27 fon) — 2 f1 sinc (27 fin) (1)

Glf, f1, f2] = rect(zib)—rect(%) )

Performing convolution with such a filter extracts the parts
of the input signal that lie within a certain frequency range.
SincNet combines Sinc-convolutions with CNNs; as we only
use the feature extraction layer of this architecture, we label
this layer as SincConv to establish a distinction to SincNet.
Compared to one filter of a regular CNN, were the num-
ber of parameters is derived from its kernel width, e.g.,
k = 100 [6], Sinc-convolutions only require two parameters
to derive each filter, the lower and upper cut-off frequencies
(f1, f2), resulting in a small memory footprint. SincConv
filters are initialized with the cutoff frequencies of the mel-
scale filter bank and then further adjusted during training.
Fig. [T] visualizes this adjustment from initialization to after
training. SincConv filter banks can be easily interpreted, as
the two learned parameter correspond to a specific frequency
band. Fig. 2| visualizes how a SincConv layer with 7 filters
processes an audio sample containing the word “yes”.

3.3. Low-Parameter GDSConv Layers

DSConv have been successfully applied to the domain of
computer vision [8 [14], neural translation [7] and KWS [2].
Fig.[3|provides an overview of the steps from a regular convo-
lution to the GDSConv. A mathematical description is given
in [7].

The number of parameters of one DSConv layer amounts
to Npscony = Kk * Cin + Cin * Cour With the kernel size k and
the number of input and output channels c;, and c, re-
spectively; the first summand is determined by the depthwise
convolution, the second summand by the pointwise convolu-
tion [7]. In our model configuration, the depthwise convolu-
tion only accounts for roughly 5% of parameters in this layer,
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Fig. 1. SincConv filter bank with 7 filters, (a) after initializa-
tion with mel-scale weights and (b) after training on [19].
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Fig. 2. An audio sample of the keyword “yes” is convolved
with the 7-filter SincConv layer from Fig. [T]to extract mean-
ingful features.

the pointwise for 95%. We therefore reduced the parameters
of the pointwise convolution using grouping by a factor g to
Nopsconw = k - ¢ + S2-feut | rather than the parameters in
the depthwise convolution. To allow information exchange
between groups we alternate the number of groups per layer,
namely 2 and 3, as proposed in [7]].

3.4. Two Low-Parameter Architectures

The SincConv as the first layer extracts features from the
raw input samples, as shown in Fig. @] As non-linearity
after the SincConv we opt to use log-compression, i.e.,
y = log(abs(z) + 1), instead of a common activation func-
tion (e.g., ReLU). This has also shown to be effective in
other CNN architectures for raw audio processing [12} [13].
Five (G)DSConv layers are then used to process the features
further: The first layer has a larger kernel size and scales
the number of channels to 160. The other four layers have
each 160 input and output channels. Each (G)DSConv block
contains the (G)DSConv layer, batch normalization [20] and
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Fig. 3. Steps from a regular convolution to the grouped depth-
wise separable convolution. (a) Regular 1D convolutional
layers perform convolution along the time axis, across all
channels. (b) The DSConv convolves all channels separately
along the time dimension (depthwise), and then adds a 1x1
convolution (i.e., a pointwise convolution) to combine infor-
mation across channels. (c) The GDSConv is performed by
partitioning the channels into g groups and then applying a
DSConv on each group. Our base model employs DSConv
layers, and our low-parameter model GDSConv layers.

spatial dropout [21] for regularization, as well as average
pooling to reduce temporal resolution. After the (G)DSConv
blocks, we use global average pooling to receive a 160-
element vector that can be transformed to class posteriors
using a Softmax layer to classify 12 classes, i.e., 10 keywords
as well as a class for unknown and for silence.

The low-parameter model is obtained by grouping the
DSConv layers with an alternating number of groups be-
tween 2 and 3. For the configuration shown in Fig.[4] the base
model has 122k parameters. After grouping, the number of
parameters is reduced to a total of 62k. Hyperparameters have
been selected through extensive experimentation based on the
best validation accuracy for a given number of parameters
comparable to models in [2| 4]

4. EVALUATION

4.1. Training on the Speech Commands Dataset

We train and evaluate our model using Google’s Speech Com-
mands data set [[19], an established dataset for benchmarking
KWS systems. The first version of the data set consists of 65k
one-second long utterances of 30 different keywords spoken
by 1881 different speakers. The most common setup consists
of a classification of 12 classes: “yes”, “no”, “up”, “down”,
“left”, “right”, “on”, “off”, “stop”, “go”, unknown, or silence.
The remaining 20 keywords are labeled as unknown, samples
of provided background noise files as silence. To ensure the
benchmark reproducibility, a separate test set was released
with a predefined list of samples for the unknown and the si-
lence class. The second version of the dataset contains 105k
samples and five additional keywords [19]. However, previ-
ous publications on KWS reported only results on the first
version, therefore we focused on the first version and addi-
tionally report testing results on version 2 of the dataset.
Every sample from the training set is used in training, this
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Fig. 4. The model architecture as described in Sec. Pa-
rameter configurations of convolutions are given as ¢, k, s that
represent the number of output channels, kernel length and
stride, respectively. In our low-parameter model, convolu-
tions are grouped from the third to the sixth layer.

leads to a class imbalance as there are much more samples for
unknown. Class weights in the training phase assign a lower
weight to samples labeled as unknown such that the impact on
the model is proportional to the other classes. This way, the
model can see more unknown word samples during training
without getting biased. Our model is trained for 60 epochs
with the Adam optimizer [22] with an initial learning rate
of 0.001 and learning rate decay of 0.5 after 10 epochs; the
model with the highest validation accuracy is saved to evalu-
ate accuracy on the test set.

4.2. Results and Discussion

The base model composed of DSConv layers without group-
ing achieves the state-of-the-art accuracy of 96.6% on the
Speech Commands test set. The low-parameter model with
GDSConv achieves almost the same accuracy of 96.4% with
only about half the parameters. This validates the effective-
ness of GDSConv for model size reduction.

Table[T]lists these results in comparison with related work.
Compared to the DSConv network in [2]], our network is more
efficient in terms of accuracy for a given parameter count.
Their biggest model has a 1.2% lower accuracy than our base
model while having about 4 times the parameters. Choi et
al. [4]] has the most competitive results while we are still able
to improve upon their accuracy for a given number of parame-
ters. They are using 1D convolution along the time dimension
as well which may be evidence that this yields better perfor-
mance for audio processing or at least KWS.

Model Accuracy Parameters
DS-CNN-S [2] 94.1% 39k
DS-CNN-M [2] 94.9% 189k
DS-CNN-L [2]] 95.4% 498k
ResNet15 [3]] 95.8% 240k
TC-ResNet8 [4] 96.1% 66k
TC-ResNet14 [4] 96.2% 137k
TC-ResNet14-1.5 [4] 96.6% 305k
SincConv+DSConv 96.6% 122k
SincConv+GDSConv  96.4% 62k

Table 1. Comparison of results on the Speech Commands
dataset [19].

Model Accuracy Parameters
SincConv+DSConv 97.4% 122k
SincConv+GDSConv  97.3% 62k

Table 2. Results on Speech Commands version 2 [[19].

As opposed to previous works, our architecture does not
use preprocessing to extract features, but is able to extract
features from raw audio samples with the SincConv layer.
That makes it possible to execute a full inference as float-
ing point operations, without requiring additional hardware
modules to process or transfer preprocessed features. Further-
more, we deliberately opted to not use residual connections in
our network architecture, considering the memory overhead
and added difficulty for hardware acceleration modules.

For future comparability, we also trained and evaluated
our model on the newer version 2 of the Speech Commands
data set; see Table [2] for results. On a side note, we observed
that models trained on version 2 of the Speech Commands
dataset tend to perform better on both the test set for version
2 and the test set for version 1 [|19]].

5. CONCLUSION

Always-on, battery-powered devices running keyword spot-
ting require energy efficient neural networks with high accu-
racy. For this, we identified the parameter count in a neural
network as a main contributor to power consumption, as
memory accesses contribute far more to power consump-
tion than the computation. Based on this observation, we
proposed an energy efficient KWS neural network architec-
ture by combining feature extraction using SincConvs with
GDSConv layers.

Starting with the base model composed of DSConvs that
have already less parameters than a regular convolution, we
achieved state-of-the-art accuracy on Google’s Speech Com-
mands dataset. We further reduce the number of parameters
by grouping the convolutional channels to GDSConv, result-
ing in a low-parameter model with only 62k parameters.
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