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ABSTRACT
Speech is understood better by using visual context; for this

reason, there have been many attempts to use images to adapt auto-
matic speech recognition (ASR) systems. Current work, however, has
shown that visually adapted ASR models only use images as a regu-
larization signal, while completely ignoring their semantic content. In
this paper, we present a set of experiments where we show the utility
of the visual modality under noisy conditions. Our results show that
multimodal ASR models can recover words which are masked in the
input acoustic signal, by grounding its transcriptions using the visual
representations. We observe that integrating visual context can result
in up to 35% relative improvement in masked word recovery. These
results demonstrate that end-to-end multimodal ASR systems can
become more robust to noise by leveraging the visual context.

Index Terms— Multimodal learning, noisy ASR, robustness

1. INTRODUCTION

Humans process and understand language better when integrating
information from multiple modalities. More concretely, in conver-
sations, we use the context that is surrounding us to properly in-
terpret what has been said. Consequently, visual modality integra-
tion has recently become a trend in the speech and natural language
processing communities. Previous works show improvements in
the domains of visual question-answering [1], multimodal machine
translation [2], visual dialog [3], and automatic speech recognition
(ASR) [4]. Although there are several visual adaption approaches for
ASR [4, 5, 6, 7, 8, 9], it is still unclear how the models leverage the
visual modality.

Previous works have demonstrated that the visual modality can
be used to individually adapt the language [7, 9, 6] and acoustic [8]
model components, as well as end-to-end (e2e) models [4, 10]. In
acoustic model adaptation [8], images can provide acoustic context
(e.g. outdoors and indoors acoustics can be inferred from images). In
a similar vein, breakthroughs in image captioning inspired language
models contextualization using visual information [7, 9]. By inferring
the domain of a conversation from images, we can bias the language
model towards a desired space and improve the transcription. How-
ever, a lack of analysis and understanding of these models inhibits
their widespread application.

In previous work, we analyze the contribution of different visual
representations in an end-to-end multimodal ASR system [5]. We
observe that an ASR model trained with multimodal information is
able to maintain its performance even when the visual modality is
discarded during test time. This observation indicates that the model
is using the visual modality as a regularization technique, and not
using the semantics of the image. Similar findings in multimodal
machine translation [11] led to an investigation of the utility of visual
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Fig. 1. Our set of experiments demonstrate that multimodal speech
recognition systems can recover masked words by using images as
an auxiliary signal.

context [12]. They concluded that visual modality is helpful when
the primary modality is degraded.

In this paper, inspired by [12], we hypothesize that Multimodal
ASR systems can take advantage of the visual modality under severely
noisy conditions and be more robust than unimodal models. Such
robustness to noise is particularly desirable in ASR - since speech is
inherently a noisy medium.

The main contributions of this paper are as follows:

• A set of noise-masking experiments, where we inject different
kinds of noise into the acoustic signal in a structured manner
(Section 2).

• A comparison of the ability of unimodal and multimodal ASR
models to recover the masked audio signal (Section 4.1).

• Quantitative (Section 4.2) and qualitative analysis (Section
4.3) to investigate how exactly the visual modality is utilized.

Our observations on the Flickr 8k Audio Caption Corpus indicate
that multimodal ASR models perform better at recovering masked
words than unimodal models, thereby validating our hypothesis that
multimodal models are more robust to noise.

Furthermore, our analysis suggests that recovery performance
drops when we provide incorrect visual features during training and/or
testing - this result indicates that the model is sensitive to the the
semantic content of the visual context.

2. METHODOLOGY

In this section, we introduce our multimodal architecture, similar
to [5, 10], that we use to incorporate the image modality in an end-to-
end ASR system. We also describe the different masking experiments
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that we design to test our hypothesis. Inspired by [12], we simulate
different scenarios where the audio signal is corrupted by various
masking techniques. This audio corruption is done in a controlled
manner, by deterministically fixing a set of words and masking all
occurrences in the dataset.

2.1. Models

To be consistent with previous work, we test our hypothesis with the
best performing models and features according to [5, 10].

2.1.1. Unimodal ASR

Our baseline unimodal ASR model is a sequence-to-sequence model
with attention [13, 14]. The encoder consists of 6 bidirectional LSTM
layers with tanh activation, with sub-sampling at the 3rd and 4th lay-
ers [13]. The decoder is a two-layer GRU which computes attention
over the encoder states.

2.1.2. Multimodal ASR

For our Multimodal ASR model, we use early decoder fusion. In
this fusion technique, during decoding, a visual feature vector f is pro-
jected down to the hidden state dimension, and further concatenated
to the input embedding vector yt at each timestep before passing it
through the GRU decoder.

f ′ = tanh(Wff + bf ); yt = [yt; f
′]

2.2. Audio Corruption

To create scenarios where information is missing from the primary
modality, we perform masking on the audio data. Because we need
to have control over the words being masked and recovered, we
generate word-level masking. To do so, we first generate forced
aligned timings to localize specific words in the transcriptions. After
that, we experiment with two masking techniques:

1. Silence Masking: We substitute the masked word with a specific
value, silence, similar to the special token in [12]. In this non-
realistic scenario, the model is trained to generate the missing
word when a known signal is present in the audio.

2. White Noise Masking: We substitute the masked word with
white noise. This more realistic scenario is an approximation to a
noisy-ASR problem where speech is corrupted by some stochastic
signal. In this case, in contrast to a traditional noisy-ASR situation
where the speech is overlapped with noise, the masked word is
completely overwritten.

It is important to note that the masking is performed on all data splits.
This set up differs from [10], where the masking was performed only
in the test set and models were trained on unmasked data.

2.2.1. Masked Words

To have a more clear insight into how the model uses the image
modality, we experiment by masking two different sets of words in the
dataset: nouns and places. We analyze the efficiency of the model on
recovering these different categories and how the visual representation
influences the result. We hypothesize that visual embeddings trained
on place recognition should be more effective for place word recovery
than objects, and vice versa.

2.3. Congruency Experiments

Similar to [11], we perform a set of experiments where we misalign
images and utterances. The outcome of this set up quantifies the
sensitivity of our model towards unaligned images. These results,
therefore, can provide insights on our previous claim that multimodal
models use the visual modality as a regularization signal [5].

• Incongruent Decoding: We train multimodal models on the cor-
rect (congruent) image-utterance pairings, and deliberately mis-
align the images and utterances during testing. This is done to
check that our multimodal models rely on the images - when pre-
senting an unrelated image, we expect to see poor performance.

• Incongruent Training: We both train and test the models on
incongruent image-utterance alignments. In this experiment, we
wish to see if providing an incorrect visual signal can still result
in improvements in the model, similar to the regularization effect
observed in [5].

3. EXPERIMENTAL SETUP

3.1. Dataset

We perform experiments on the Flickr 8k Audio Caption Corpus [15],
which contains 40,000 spoken captions (total 65 hours of speech)
corresponding to 8,000 natural scene images from the Flickr8k
dataset [16]1. We use the pre-defined training, development and test
splits of 30k, 5k and 5k utterances respectively. The audio and text
captions in this data are more structured and clean, compared to the
‘in-the-wild’ nature of How2 [17].

3.2. Implementation Details

3.2.1. Word Masking

• Nouns: We use the Stanford POS tagger to tag all sentences in the
dataset, and find the top 100 nouns (NN tag) in the entire dataset.
All words among the top 100 nouns are then masked. This affects
≈ 17.5% of all words in the corpus.

• Places: We use the categories from the Places365 dataset, which
describe 365 scene categories. All words in our dataset which
correspond to the Places365 categories are subsequently masked.
This affects ≈ 5.4% of all words in the corpus.

3.2.2. Visual Features

We preprocess images as in [5]. We experiment with two visual fea-
ture types to capture different semantic information from the images:

• Object Features: We use a ResNet-50 CNN [18] trained on Ima-
geNet for recognizing 1000 object categories. We extract 2048-dim
average pooled features from the penultimate CNN layer.

• Place Features: A ResNet-50 trained on Places365 [19] for scene
recognition with 365 categories. We extract the posterior class
probabilities, which gives us 365-dimensional visual features.

3.2.3. Acoustic Features

We extract 40-dimensional filter bank features from 16kHz raw
speech signals using a time window of 25ms and an overlap of 10ms,
using Kaldi [20], and 3-dimensional pitch features. To corrupt the

1https://groups.csail.mit.edu/sls/downloads/
flickraudio/

https://groups.csail.mit.edu/sls/downloads/flickraudio/
https://groups.csail.mit.edu/sls/downloads/flickraudio/


Masking Type Masked Words Model Visual Features Recovery Rate Rel RR4 WER Rel WER4

None -
Unimodal - - - 16.4% -

Multimodal Object Ftrs - - 14.8% 10.0%
Multimodal Place Ftrs - - 15.6% 4.7%

Silence Nouns
Unimodal - 46.0% - 32.9% -

Multimodal Object Ftrs 57.8% 25.5% 29.9% 4.0%
Multimodal Place Ftrs 52.6% 14.2% 31.5% 3.2%

Silence Places
Unimodal - 42.7% - 22.6% -

Multimodal Object Ftrs 57.0% 33.5% 19.3% 14.6%
Multimodal Place Ftrs 53.7% 25.7% 22.0% 2.7%

Whitenoise Nouns
Unimodal - 43.3% - 43.5% -

Multimodal Object Ftrs 57.3% 32.3% 36.5% 16.2%
Multimodal Place Ftrs 50.4% 16.3% 43.1% 0.9%

Whitenoise Places
Unimodal - 42.2% - 25.2% -

Multimodal Object Ftrs 57.8% 37.1% 19.3% 23.6%
Multimodal Place Ftrs 53.7% 27.4% 23.5% 7.0%

Table 1. Word Error Rate (WER) and Recovery Rate (RR) scores for our unimodal and multimodal models in the different masking conditions.
We also show the improvements (4s) of our multimodal models, relative to the unimodal model under same masking conditions.

original audio signals, we first extract word-audio alignments from a
Kaldi GMM-HMM model trained on the Wall-Street Journal Corpus2,
and then we increase the beginning and end timing marks by 25% of
the segment duration to account for possible misalignments. Finally,
we use SoX3 and the audio-word alignments to mask the words with
white noise or silence. To remove a possible bias induced by the
duration of the masked audio segment, the silence/white noise masks
are of fixed duration of 0.5 seconds.

3.2.4. Model Implementation

The model hyper parameters are the same ones as in [10]. All models
are implemented using the nmtpytorch framework [21]. For each
experiment, we train three models with different random seeds and
report the average results.

3.3. Evaluation Metrics

For consistency with previous ASR work, we report Word Error Rate
(WER). Because WER is sensitive to variations in unmasked words,
it is not a direct indicator of the ability to recover masked words.
We propose a second metric, called Recovery Rate (RR), which
evaluates the models’ ability to accurately recover masked-words.

Recovery Rate =
#correctly transcribed masked words

#masked words in test set
× 100%

To compute our metrics, we use sclite4 which provides WER and
hypothesis-reference word alignments for RR calculation.

4. RESULTS & ANALYSIS

4.1. Results

In Table 1, we summarize the results of our masking experiments. We
see that multimodal ASR models consistently improve over unimodal

2By manually inspecting the alignments, we concluded that their quality
was good enough for the purpose of this paper.

3http://sox.sourceforge.net/
4http://www1.icsi.berkeley.edu/Speech/docs/

sctk-1.2/sclite.htm

ones on WER, under all masking conditions. We also note that Object
Features consistently outperform the Place Features, even when place
words are masked. We hypothesize that this might be due to a domain
mismatch between Places365 and Flickr8k datasets. It is important to
note that due to an intrinsic unbalance between nouns and places in
Flickr8k, the results on place and noun masking are not comparable.
We leave a more accurate comparison for future work.

However, previous work has suggested that visual modality is
only being used as a regularization signal [5]. To investigate this
behavior, we also measure the models’ ability to recover masked
words - ensuring that the observed improvements come from the
semantics of the visual context. We observe that multimodal models
have a significant improvement in noun and place RR, with both
Object and Place features. Once again, Object features seem to be
more useful for recovery than Place features, even when place words
are masked. However, we also note that Place features are better
at recovering place words than nouns. These improvements in RR
demonstrate that visual context is highly useful when it comes to
recovering information which is missing in the primary modality.

An interesting observation is that even with no visual information,
a unimodal ASR model is able to successfully recover ≈ 45% of the
masked words. We hypothesize that this is due to the predictable
nature of the captions in Flickr 8k (similar to observations in Multi30k
[12]). Due to this structured nature of the text, the decoder’s implicit
language model is able to predict the correct masked word using
the decoded text context. To test this hypothesis, we train a GRU
language model (LM) and calculate the masked word prediction

Masked Words Model WER RR

Nouns
Unimodal 32.9% 46.0%

Multimodal (Object) 29.9% 57.8%
Multimodal (GT) 25.3% 92.63%

Places
Unimodal 22.6% 42.7%

Multimodal (Object) 19.3% 57.3%
Multimodal (GT) 20.5% 92.66%

Table 2. Comparison of multimodal improvements when we provide
ground-truth (GT) information about what words have been masked

http://sox.sourceforge.net/
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm


Reference A dog wearing a collar jumping from a platform .
LM A man is a red is over a blue
Unimodal ASR A woman wearing a collar jumping into a hurdle .
Multimodal (object feats) A dog wearing a collar jumping through a puddle .
Multimodal (place feats) A dog wearing a collar jumping over a hurdle.

Reference A boy with red shorts is holding a basketball in a basketball court .
LM Man in a hair is jumping a stick . a field ball
Unimodal ASR A boy with red shorts is holding a soccer ball .
Multimodal (object feats) A man in red shorts is holding a basketball in a basketball court .
Multimodal (place feats) A man with red shorts is holding a basketball in a basketball court .

Table 3. Examples of noun recovery from the different models. Blue words indicate reference words (nouns or places) which are masked with
silence in the input speech signal, red and green words indicate incorrectly and correctly substituted words in the hypotheses transcriptions.
The language model (LM) outputs are generated by feeding in the ground-truth reference context at each timestep (not the generated context).

accuracy when it is fed the ground-truth context. The LM correctly
predicts the masked word 34% of the time. Because the decoder learns
to sample from the set of masked words when it encounters silence,
we only consider the instances where the LM makes a prediction
from the set of masked words. We observe that the LM masked
word accuracy jumps to 45%, matching the unimodal ASR RR. We
conclude that the high RR for the unimodal system is a consequence
of the structured captions in Flickr 8k, and the subsequent strong LM.

While our multimodal models show significant improvements in
WER and RR, we believe that there is a lot of room for improvement.
To set an upper bound, we provide a binary vector that encodes which
words have been masked. In Table 2, we summarize the improve-
ments in WER and RR obtained by feeding ground-truth masking
information when nouns and places are masked with silence. These
results encourage further research on more semantically meaningful
features for this task. We leave this investigation for future work.

4.2. Congruency Analysis

In Table 4, we summarize the results of our congruency experiments
(Section 2.3). When incorrect visual features are provided during
inference time (Incongruent Decoding), the models’ performance
drops significantly on both the WER and RR metrics. These results
show that incorrect visual context is actively harming the model. We
can conclude that the model learns some useful information during
training which is not present during test time.

Masked Words Visual Features Rel RR4 Rel WER4
Incongruent Decoding

Nouns Congruent 25.5% 9.1%
Incongruent -43.5% -28.3%

Places Congruent 33.5% 14.6%
Incongruent -52.7% -17.4%
Incongruent Training

Nouns Congruent 25.5% 9.1%
Incongruent 2.8% 6.2%

Places Congruent 33.5% 14.6%
Incongruent 3.1% 10.9%

Table 4. Comparison of multimodal models’ performance under the
incongruent decoding and training setups. Object features and silence
masking were used for all experiments.

When we train the models using misaligned images (Incongruent
Training), we don’t observe a considerable improvement over uni-
modal ASR on the masked RR task. We believe that the slight RR
gains are due to semantic overlap between images. We also obtain
larger improvements in WER (not as much as congruent training),
consistent with the regularization effect previously observed in [5].

4.3. Qualitative Analysis

In Table 3, we consider several examples in the test set, and compare
how unimodal and multimodal models transcribe. In the first example,
the LM and unimodal ASR substitute words that occur frequently
in the dataset (i.e. man and woman, repectively). However, the
multimodal models correctly recover the word “dog”.

In the second example, unlike the multimodal systems, the uni-
modal model recovers the word “boy” correctly. However, the mul-
timodal models, relying on the image, identifies the object (i.e. bas-
ketball) and scene (i.e. basketball court) and correctly recover the
masked words. They are able to reason that the masked word is
something the boy is holding, and localize the basketball correctly.

5. CONCLUSIONS AND FUTURE WORK

We show that when we deterministically mask out words in the input
speech signal using silence/white noise, having auxiliary context from
images helps us improve recovery of masked words, demonstrating
that the model can avail semantic information from the image.

For future work, we plan to extend the structured experiments
(i.e. masking concrete words) performed in this paper into an un-
structured regime (i.e. speech corrupted by overlapping noise), to
see if multimodality can help with speech recognition under noisy
conditions. If the results are successful, this work could potentially
be tested in real-world multimodal environments such as [17].
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