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ABSTRACT

The problem of maximizing the information flow through a
sensor network tasked with an inference objective at the fu-
sion center is considered. The sensor nodes take observations,
compress and send them to the fusion center through a net-
work of relays. The network imposes capacity constraints
on the rate of transmission in each connection and flow con-
servation constraints. It is shown that this rate-constrained
inference problem can be cast as a Network Utility Maxi-
mization problem by suitably defining the utility functions
for each sensor, and can be solved using existing techniques.
Two practical settings are analyzed: multi-terminal parame-
ter estimation and binary hypothesis testing. It is verified via
simulations that using the proposed formulation gives better
inference performance than the Max-Flow solution that sim-
ply maximizes the total bit-rate to the fusion center.

Index Terms— Flow optimization, sensor networks, sta-
tistical inference, Internet of Things

1. INTRODUCTION

Consider a sensor network comprised of sensor nodes, re-
lay/intermediate nodes and a fusion center (FC). Each sensor
node takes a single observation, which is a random variable
related to the state of nature/target of interest. Assume that
the sensor nodes cannot communicate with each other, and
that they compress their observation and send it to the inter-
mediate nodes. The intermediate nodes just act as relays and
route messages towards the fusion center. The fusion center is
tasked with inferring the state of nature. The relay network is
considered to be capacitated and satisfies flow conservation at
each relay node, i.e. number of units of information received
is equal to the number of units of information transmitted by
each relay node. So, the problem is a rate-constrained in-
ference problem. Note that the trade-off here is between the
rate assigned to each sensor versus the quality of compressed
observations. We show that if the inference objective can be
modeled as a sum of utility functions, which capture the infor-
mation content in the compressed observation of each sensor
according to the rate assigned to them, then the problem can
be cast as a Network Utility Maximization problem. We ana-
lyze two inference tasks: parameter estimation and detection
(specifically binary hypothesis testing), and explicitly formu-

late the utility functions for these tasks.

There is considerable literature on multi-terminal param-
eter estimation, either from one-shot or having time series
(e.g., [1H7]). To the best of our knowledge, they at most con-
sider the sum rate constraint for the sensors or characteriz-
ing their rate region for a given distortion constraint, with-
out considering the actual network structure and link capacity
constraints (e.g., whether the desired rates for each sensor are
achievable by the actual network).

We focus on the one-shot problem in this paper. The
closet work to our multi-terminal (vector) parameter estima-
tion is Sani and Vosoughi [8]], in which it is assumed that the
unknown vector is zero-mean Gaussian with known covari-
ance matrix. We do not need this assumption and treat the
vector as deterministic and unknown. Another distinguishing
factor is that [8]] assumes there is an overall sum rate con-
straint on the network for these sensors, while our informa-
tion flow optimization scheme takes into account the actual
structure and link capacity constraints of the network.

Prior work that studies detection in sensor networks, in-
cludes Tay and Tsitsiklis [9]], in which the one-shot problem
of decentralized detection in tree structured sensor networks
is considered. They characterized the optimal error exponent
under a Neyman-Pearson formulation, but did not analyze ca-
pacitated networks. Another line of work was initiated by
Han and Amari [10], in which the problem of multi-terminal
hypothesis testing is studied with one-hop rate constraints to
a fusion center and sequential observations. The emphasis of
this work is on extending rate distortion theory to this dis-
tributed setting.

2. PROBLEM SETUP

We model the network as an undirected graph G = (V, E).
In this graphical model, each edge (u,v) € E has an integral
capacity c,, associated with it, which is the maximum pos-
sible rate in that connection(either way). Let the rate in edge
(u,v) € E be ry,. We define the rates to be anti-symmetric,
i.e. ryy = —Tyyu. The rates obey flow conservation at each
intermediate node. Let S denote the set of sensor nodes. Let
N = |S| be the number of sensor nodes. Let ¢ denote the
fusion center. The performance of the graph is measured in
terms of the information content regarding the state of nature
(to be inferred) in the messages sent by the sensor nodes. In



this regard we assume there exists a concave utility function
gs : R — R, that captures the notion of information content
in the message from sensor node s. The goal is to maximize
the sum utilities of the messages received at the fusion center.
Let the sum rate from a node u € V' be denoted by

Ty = Z Tuv (l)
veV:(uw)EE

We pose the optimization problem as follows

max Z 9s(Ts) (2a)
“ ses
subject to V(u,v) € E, Tyy < Cup (2b)
V(u,v) € E, ryp = —Tou (2c)
Vue V\{SuUt}, r, =0. (2d)

In this problem formulation, we only consider the one-
shot problem, i.e. only a single observation (or a single block
of observations) is collected, compressed and sent through the
network by each sensor. Assuming the rate is real-valued,
Problem (2) is a convex program and therefore is straightfor-
ward to solve. It is worth mentioning that, many decentral-
ized or distributed methods have been proposed to solve this
kind of Network Utility Maximization problem, e.g., [[11H14]
and the references therein. For example, it is straightforward
to use Dual Decomposition method to solve the above con-
vex problem [11,|15]. If the rates and capacities are con-
strained to be integer-valued, we can use the solution of the
real-valued relaxation to obtain an integral solution in poly-
nomial time [16, Theorem 5], such that the integral rates

rq%) are close to the real-valued rates r,, in the sense that

I
> r( ) — {Z TQJ.
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We now discuss two instances of inference tasks in sen-

sor networks: multi-terminal parameter estimation and binary
hypothesis testing.

3. FLOW OPTIMIZATION FOR PARAMETER
ESTIMATION

We consider a sensor network with N spatially distributed
sensors. Each sensor 7 takes a linear measurement of the un-
known deterministic vector @, and quantizes the correspond-
ing scalar measurement y; into certain number of bits. Then
the sensors want to send those bits to the fusion center through
a capacitated relay network. Finally, the fusion center esti-
mates x based on the quantized data it received from all the
sensors. Mathematically, we assume the following linear ob-
servation model on each sensor i:

yi=ajz+mn,i=1,.,N, 3)
which can be jointly written as:

y = Az +1, 4)

where the vector y € RY are the overall measurements from
all the N sensors, and the sensing matrix A € RNV*4 g
known. The vector n € R models the i.i.d. bounded noise

with zero mean and variance o2.

For simplicity, we assume that the value of y; is within
the sensor input range, and the quantizer uniformly divides
that range into small intervals for quantization. For each y;,
we denote its quantized version as d;, and the corresponding
quantization noise is €; = d; — y;. So we have

di=alc+n+e,i=1,..,N, (5)

For small quantization intervals A, the quantization noise ¢;
is approximately uncorrelated with the input y; and has zero-
mean with variance A?/12 [17].

The fusion center wants to accurately estimate & from all
the quantized data it received via the least squares & = A'd.
The question is: Given the limited capacity of the network, to
minimize the estimation error at the fusion center, how should
we optimize the network flows and how many bits should we
allocate to each sensor?

The well studied max-flow method may not give the opti-
mal solution for this problem, even though it finds the maxi-
mal possible number of bits that can be sent from those sen-
sors to the FC.

Our goal here is not to minimize the reconstruction error
of y, but rather minimizing the mean squared error E[||& —
x||3] via optimizing the network information flows. We have
that

E[|2 — 2|3] (6)
=E[||ATd - z|3] (7)
=E[|AT(Az + 1+ €) — z|3] (8)
=E[|AT(n + €)|3] )
=E[Tr{A"(n +€)(AT(n+¢€)"}] (10)
=E[Tr{AT(n + €)(n+ )" (A)}] (11)
=Tr{ATE[(n + €)(n+ ¢)"](AT)"} (12)
~Tr{Aldiag(c? + A2/12,...,0% + A% /12)(AT)T} (13)

[(0® + AZ/12)||AT(:,4)13] (14)

-p"qz

=1

Since A; 2T , where r; is the number of bits allocated
to sensor ¢, minimizing @]) is equivalent to maximizing the
following:

i)3/4", (15)

N
- Z ||AT<7
i=1

Now the overall problem is cast as Problem (2)).



4. FLOW OPTIMIZATION FOR DETECTION

We first discuss some known results of optimal quantizers for
detection in the classical setting before introducing the sen-
sor network setting. Let (), F) be a measurable space. Let
Py and P; be two probability measures defined on (Y, F).
Under hypothesis H;, ¢ = 0,1, a }-valued random variable
Y has the distribution P;. We define a deterministic n-level
quantizer as an F-measurable function that maps ) — [n] =
{1,2,...,n}. Let T',, be the set of all randomized n-level
quantizers. Let the distribution of v(Y") under hypothesis H;
be Q;(7), for v € T, for some n. Consider the problem
of finding a randamized n-level quantizer to maximize the
Kullback-Leibler(KL) divergence between Q1 (~) and Qo (7),
denoted by D(Q1(7)||Qo(7)). It is well-known that the opti-
mal error exponent achieved in Neyman-Pearson testing with
access to quantized observations is D(Q1(7)]|Qo (7)) In this
regard, we define a utility function fp, p, : N — R as follows:

Je1 2o (n) = sup D(Q1(7)]|Qo(7)) (16)
RISIEY

Assume for simplicity that Py and P; have densities pg
and p; with respect some common measure y. The likelihood
ratio is a measurable function L : ) — [0, 0o] given by

p1(y)/po(y), p1(y) # 0,p0(y) # 0
L(y) =40, pi(y) =0,po(y) #0 (A7)
00 p1(y) # 0,po(y) = 0.

We define the threshold set T, to be the set of vectors
t = (to,t1,...,tn) € [0,00]"*! satisfying 0 = to < t; <
- < tpo1 < t, = 0o. We define a likelihood ratio quantizer
~¢ with threshold vector t € T),, as a quantizer that satisfies
the following V¢ € [n], Vi € {0, 1}:

Pi(y(Y) = Cand L(Y) ¢ [te—1,t]) =0.  (18)

Tsitsiklis [|18] proved that the optimal quantizer for maximiz-
ing D(Q1(7)||Qo(~)) for a given number of quantization lev-
els is the likelihood ratio quantizer, i.e.

max D(Q:1(M)1Qo(v)) = gng(Ql(%)llQo(%))- 19)

Thus, we get fp, p,(n) = Q%X D(Q1(7)[1Qo(t))-

We now consider binary hypothesis detection in the sen-
sor network setting. Let IP’EJ ) denote the distribution of ob-
servation Y; € ); from sensor j under the hypotheses H,

i = 0, 1. As before, assume that Pé] ) and ]P’gj ) are absolutely
continuous with respect to some common measure ;). The
fusion center is tasked with the objective of finding the true
hypothesis. In this case, the Neyman-Pearson problem with
the rate conservation and capacity constraints is an intractable
problem. We consider the problem of maximizing the KL-
divergence between the distributions of the quantizer outputs

under the two hypothesis,

p(Q" QP w...QM e ¢ @...Qf") o)

N

- ZD(Q%”HQ&”), @n

where QEJ ) is a shorthand notation for QZ(-J )(fyj), the distri-
bution of the quantized observation ;(Y;) from the j™ sen-
sor. Note that (20) is the optimal error exponent achieved
in Neyman-Pearson testing with access to quantized observa-
tions from all sensors.

In light of (I9), our objective can be re-written as follows:

N
€)
i I CAChI ) @2)
N
= max HD( Vol () @)
= max Z fpgﬂ,ﬂbgn (r5) 24)
J J:1

Now the problem posed can be cast as Problem (2) with
gs(rs) = fP(ls)’P[()@ (rs), where rs = logy(ns) and n, are
the number of quantization levels for sensor s. Note that
the domain of the function is discrete and so we use
linear-interpolation to get a surrogate objective function for
the real-valued relaxation of Problem (2). It can be easily
shown that (T6) is increasing, but it is difficult to show that
it is concave. We verified via simulations that it is indeed
concave for many cases of distributions. For example, Fig.
shows the plot of fp, p,(n) for the case when py and p;
are unit variance Gaussian densities with means 0 and 3 re-
spectively. Fig. [2| shows the plot of fp, p,(n) for the case
when p( and p; are exponential densities with rates 0.5 and 1
respectively.

D, IP,)

Utility function

Fig. 1: Plot of fp, p,(n), po is N(0,1) and p; is N'(3,1).
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Fig. 2: Plot of fp, p,(n), po is Exp(0.5) and p; is Exp(1).

5. EXPERIMENTS

We generate a random graph having the following structure:
N sensor nodes form the first layer, N5 intermediate nodes
form the second layer, N3 intermediate nodes form the third
layer, and N, intermediate nodes, which form the fourth
layer, are connected to the fusion center. Each node from
first layer is randomly connected to K nodes from the second
layer. Now each connected node in the second layer is in turn
randomly connected to K nodes from the third layer. Simi-
lar connections are established between the third and fourth
layer.

5.1. Information Flow Optimization for Parameter Esti-
mation

We set the network structure parameters as follows: N; = 10,
Ny = 50, N3 = 30, Ny = 10 and K = 4. Capacities are as-
signed to the edges uniformly random from {1,2,...,15}.
We study the sensing matrix A considered in [19], where
there are some sensors close to the target and therefore have
stronger signal. The rest of sensors have less proximity to
the target and the signal is weak. To simulate 4 sensors with
weak signal and 6 sensors with strong signal, we first gener-
ate a 10 by 3 matrix whose entries are i.i.d. drawn from the
uniform distribution U (0, 1), then we multiply its first 4 rows
by a factor « to obtain the sensing matrix A € R'°%3, The
unknown vector x € R? is randomly drawn from A(0, I).
The bounded noise n; is i.i.d. generated from uniform distri-
bution U(—0.1, 0.1). The uniform quantizer with range [-5,5]
is employed to quantize y; into r; number of bits.

We first generate the network and sensing matrix A with
a = 1, and report the Mean Squared Error (MSE) of the esti-
mated & by the proposed method[T_-]under 100000 Monte Carlo

I After obtaining real-valued solutions to Problem (IZ]), we simply floor
them to get integral value.

runs with different realizations of  and 1. Then we multiply
the first 4 rows of A by a factor « and redo the simulations.
We also compare with the Max-Flow solution, which maxi-
mizes the total number of bits send through the network to
the Fusion Center, and allocates the corresponding bits for
the sensors to quantize their measurements. Table [T]lists the
total number of allocated bits and the MSE of the estimated &
under one realization of the network and A. On this example,
the proposed information flow optimization scheme performs
much better than the Max-Flow solutio even though it may
not allocate maximum number of bits. As the value of « de-
creases, the difference between the sensors increases, and the
benefits of the proposed method become more clear.

Table 1: MSE of the estimated & and number of bits
allocated under one realization of the network and A.

MSE/bits a=1 a=0.3 a=0.1
Max-Flow | 0.2673/74 | 1.1939/74 | 1.5068 / 74
Proposed | 0.0148 /73 | 0.0230/73 | 0.0241/74

5.2. Information Flow Optimization for Binary Hypothe-
sis Testing

We set the network structure parameters as follows: N1 = 10,
Ny =4, N3 =3, Ny = 2, and K = 1. We consider 3 differ-
ent settings. For all settings, under Hy, the observations from
all sensors follow standard normal distribution. For setting 1,
under H1, the observations from first five sensors follow the
distribution A'(11, 1), and the rest follow A/ (2, 1). For setting
2, under H;, the observation from the j‘h sensor follows the
distribution N'(j + 1, 1). For setting 3, under Hy, the obser-
vations from first five sensors follow the distribution N'(2, 1),
and the rest follow A(11,1). Capacities are assigned to the
edges uniformly at random from {1,2, 3,4, 5}. Table 2] lists
the KL-divergence between the distributions of the quantized
observations under H; and Hj, achieved by the proposed
information flow optimization scheme and Max-Flow algo-
rithm, for one realization of a network. In the obtained real-
ization of the network, the first five nodes have smaller overall
capacity than the rest of the nodes. In this case too, we see that
the proposed information flow optimization scheme performs
consistently better than the max-flow solution.

Table 2: KL-divergence between the distributions of the
quantized observations under H; and Hy.

Setting# 1 2 3
Max-Flow | 49.0015 | 109.6984 | 135.6004
Proposed | 50.9881 | 160.1884 | 198.6157

2Sometimes the benefits of the proposed method are not such significant.
It depends on the network and matrix A.
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