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ABSTRACT

The rising interest in single-channel multi-speaker speech separa-
tion sparked development of End-to-End (E2E) approaches to multi-
speaker speech recognition. However, up until now, state-of-the-
art neural network–based time domain source separation has not
yet been combined with E2E speech recognition. We here demon-
strate how to combine a separation module based on a Convolu-
tional Time domain Audio Separation Network (Conv-TasNet) with
an E2E speech recognizer and how to train such a model jointly by
distributing it over multiple GPUs or by approximating truncated
back-propagation for the convolutional front-end. To put this work
into perspective and illustrate the complexity of the design space, we
provide a compact overview of single-channel multi-speaker recog-
nition systems. Our experiments show a word error rate of 11.0 % on
WSJ0-2mix and indicate that our joint time domain model can yield
substantial improvements over cascade DNN-HMM and monolithic
E2E frequency domain systems proposed so far.

Index Terms— End-to-end speech recognition, speech separa-
tion, multi-speaker speech recognition, time domain, joint training

1. INTRODUCTION

Automatic Speech Recognition (ASR) is a key technology for the
task of automatic analysis of any kind of spoken speech, e.g., phone
calls or meetings. For scenarios of relatively clean speech, e.g.,
recordings of telephone speech or audio books, ASR technologies
have improved drastically over the recent years [1]. More realistic
scenarios like spontaneous speech or meetings with multiple partici-
pants in many cases require the ASR system to recognize the speech
of multiple speakers simultaneously. In meeting scenarios for exam-
ple, the overlap is in the range of 5 % to 10 %1 and can easily ex-
ceed 20 % in informal get-togethers2. Thus, there has been a grow-
ing interest in source separation systems and multi-speaker ASR.
A special focus lies on processing of single-channel recordings, as
this is not only important in scenarios where only a single-channel
is available (e.g., telephone conference recordings), but as well for
multi-channel recordings where conventional multi-channel process-
ing methods, e.g., beamforming, cannot separate the speakers well
enough in case, e.g., they are spatially too close to each other.

The topic of single-channel source separation has been exam-
ined extensively over the last few years, trying to solve the cock-
tail party problem with techniques such as Deep Clustering (DPCL)
[3], Permutation Invariant Training (PIT) [4] and TasNet [5, 6]. In
DPCL, a neural network is trained to map each time-frequency bin
to an embedding vector in a way that embedding vectors of the same
speaker form a cluster in the embedding space. These clusters can be

1Measured on the AMI meeting corpus [2].
2Measured on the CHiME-5 database.

found by a clustering algorithm and be used for constructing a mask
for separation in frequency domain. Concurrently, PIT has been de-
veloped which trains a simple neural network with multiple outputs
to estimate a mask for each speaker with a permutation invariant
training criterion. The reconstruction loss is calculated for each pos-
sible assignment of training targets to estimations for a mixture, and
the permutation that minimizes the loss is then used for training.
Both DPCL and PIT show a good separation performance in time-
frequency domain. The permutation-invariant training scheme was
adopted to time domain source separation with a Time domain Au-
dio Separation Network (TasNet) which replaces the commonly used
Short-Time Fourier Transform (STFT) with a learnable transforma-
tion and directly works on the raw waveform. TasNet achieves a
Signal-to-Distortion Ratio (SDR) gain of more than 15 dB on WSJ0-
2mix, even outperforming oracle masking in frequency domain.

Based on these source separation techniques, multi-speaker
ASR systems have been constructed. DPCL and PIT have been used
as frequency domain source separation front-ends for a state-of-the-
art single-speaker ASR system and extended to jointly trained E2E
or hybrid systems [7, 8, 9, 10]. They showed that joint (re-)training
can improve the performance of these models over a simple cascade
system. The effectiveness of TasNet as a time domain front-end
for ASR was investigated in [11], showing an improvement over
frequency domain processing for both source separation and ASR
results. However, TasNet was not yet optimized jointly with an
ASR system, possibly due to the intricacies of dealing with the high
memory consumption or the novelty of the TasNet method.

In this paper, we combine a state-of-the-art front-end, i.e., Conv-
TasNet [4], with an E2E CTC/attention [12, 13, 14] ASR system to
form an E2E multi-speaker ASR system that directly operates on
raw waveform features. We try to answer the questions whether it is
possible to jointly train a time domain source separation system like
Conv-TasNet with an E2E ASR system and whether the performance
can be improved by joint fine-tuning. Going further on the investi-
gations from [11], we retrain pre-trained front- and back-end models
jointly and show by evaluating on the WSJ0-2mix database that a
simple combination of an independently trained Conv-TasNet and
ASR system already provides competitive performance compared to
other E2E approaches, while a joint fine-tuning of both modules in
the style of an E2E system can further improve the performance by
a large margin. We enable joint training by distributing the model
over multiple GPUs and show that an approximation of truncated
back-propagation [15] through time for convolutional networks en-
ables joint training even on a single GPU by significantly reducing
the memory usage while still providing a good performance.

We finally put this work into perspective by providing a compact
overview of single-channel multi-speaker ASR system and illustrate
the complexity of the design space.
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Fig. 1. Architecture of the joint E2E ASR model. Sources are separated by a Conv-TasNet and separated audio streams are processed by a
single-speaker ASR system. During training, the permutation problem is solved based on the signal level loss with πsig.

2. RELATION TO PRIOR WORK

Other works already studied the effectiveness of frequency domain
source separation techniques as a front-end for ASR. DPCL and PIT
have been efficiently used for this purpose, and it was shown that
joint retraining for fine-tuning can improve performance [7, 8, 10].
E2E systems for single-channel multi-speaker ASR have been pro-
posed that no longer consist of individual parts dedicated for source
separation and speech recognition, but combine these functionalities
into one large monolithic neural network. They extend the encoder
of a CTC/attention-based E2E ASR system to separate the encoded
speech features and let one or multiple attention decoders generate
an output sequence for each speaker [16, 17]. These models show
promising performance, but they are not on par with hybrid cascade
systems yet. Drawbacks of these monolithic E2E models compared
to cascade systems include that they cannot make use of parallel and
single-speaker data and that they do not allow pre-training of in-
dividual system parts. The impact of using raw waveform features
directly for the task of multi-speaker ASR has only been investigated
for a combination of TasNet and a single-speaker ASR system [11],
but not yet jointly trained.

3. SOURCE SEPARATION AND SPEECH RECOGNITION

3.1. Time domain source separation with Conv-TasNet

Conv-TasNet [6] is a single-channel source separating front-end
which can produce waveforms for a fixed number of speakers from
a mixture waveform. It is a variant of [4], replacing the feature
extraction by a learnable transformation and the separation network
by a convolutional architecture. It outputs an estimated audio stream
in time domain for each speaker present in the input signal x:

[x
(enh)
1 ,x

(enh)
2 ] = ConvTasNet(x). (1)

The model directly works on the raw waveform instead of STFT
frequency domain features which makes it possible both to easily
model and reconstruct phase information and to propagate gradients
through the feature extraction and signal reconstruction parts. While
propagating from raw waveform at the output to raw waveform at
the input, it is possible to directly optimize a loss on the time do-
main signals, such as the Scale-Invariant-Signal-to-Distortion Ratio
(SI-SNR) loss, which we call the front-end loss L(FE)here. This
loss is optimized in a permutation-invariant manner by picking the
assignment πsig of estimations to targets that minimizes the loss.

Since the Conv-TasNet is built upon a convolutional architec-
ture, it can be heavily parallelized on GPUs as compared to RNN-
based models, but has a limited receptive field. When optimized for
source separation only, the limited length of the receptive field is ac-
tively exploited by performing a chunk-level training on chunks of
4 s length randomly cut from the training examples, both increasing
the variability of data within one minibatch and simplifying imple-
mentation, since the length of all training examples is fixed.

3.2. End-to end CTC/attention speech recognition

As a speech recognizer we use a CTC/attention-based ASR system.
We use an architecture similar to [13] with an implementation in-
cluded in the ESPnet framework [18], but we replace the original
filterbank and pitch feature extraction by log-mel features imple-
mented in a way such that gradients can be propagated through. This
way, gradients can flow from the ASR system to the front-end.

The multi-target loss for the ASR system L(ASR) is composed
of a CTC and an attention loss, as in [13] Sections II B and C,

L(ASR) = λL(CTC) + (1− λ)L(att) (2)

with a weight λ that controls the interaction of both loss terms. Dur-
ing training, teacher forcing using the ground truth transcription la-
bels is employed for the attention decoder.

4. JOINT END-TO-END MULTI-SPEAKER ASR

We propose to combine a Conv-TasNet as the source separation
front-end with a CTC/attention speech recognizer as displayed in
Fig. 1. The input mixture x is separated by the front-end and the
separated audio streams are processed by a single-speaker ASR
back-end. Although multi-speaker source separation can already be
performed by combining independently trained front- and back-end
systems, the source separator produces artifacts unknown to the
ASR system which disturb its performance. According to [19], and
as also shown in [8, 10], such a mismatch can be mitigated by jointly
fine-tuning the whole model at once.

We here compare three different variants of joint fine-tuning: (a)
fine-tuning just the ASR system on the enhanced signals, (b) fine-
tuning just the front-end by propagating gradients through the ASR
system but only updating the front-end parameters and (c) jointly
fine-tuning both systems. The losses for the front- and back-end are
combined as

L = αL(FE) + βL(ASR), (3)



where α and β are manually chosen weights for the front-end and
ASR losses. For (a) α is set to 0 and β to 1, for (b) α is set to 1 and
β to 0, and for (c) β is set to 1 and α is set to 0.5 without carefully
optimizing them. The system does not seem to be very sensitive to
the choices of α and β.

In order to choose the transcription for teacher forcing and loss
computation a permutation problem needs to be solved. Two pos-
sible options are to use the permutation πCTC that minimizes the
CTC loss as in [16], or the permutation πsig that minimizes the sig-
nal level loss, as in [8]. While using πCTC has the advantage of not
requiring parallel data, permutation assignment based on πsig works
more reliably in our experiments and we use πsig for all fine-tuning
experiments even when the front-end is not optimized.

4.1. Approximated truncated back-propagation through time

One-dimensional Convolutional Neural Networks (1D-CNNs) over
time, as they are used in the Conv-TasNet, can be seen as an alter-
native to Recurrent Neural Network (RNN) architectures. Similar to
RNNs, this can lead to enormous memory consumption when a suf-
ficiently long time series is used for back-propagation. For example,
we here fine-tune the Conv-TasNet with the E2E ASR model jointly
on single mixtures. Although we constrain ourselves to a batch size
of one, this requires us to split the model onto four GPUs, three
GPUs for the front-end and one GPU for the back-end, by placing
individual layers on different devices.

This memory consumption can be addressed by generalizing
truncated back-propagation through time (TBPTT) to 1D-CNN ar-
chitectures. TBPTT for 1D-CNNs can in theory be realized by back-
propagating the gradients for a part of the output only. While moving
back towards the input, the gradients reaching over the borders of
this part are ignored. In practice, however, this is difficult to imple-
ment and we here approximate TBPTT for the Conv-TasNet front-
end by ignoring the left and right context of the block the gradients
are computed for. We first compute the forward step on the whole
mixture without building the backward graph to obtain an output es-
timation for the whole signal. Note that this only requires to store
the output signal and no persistent data for the backward computa-
tion. We then compute the forward step again with enabled back-
ward graph construction, but only for a chunk randomly cut from
the input signal. The approximated output for the whole utterance is
formed by overwriting the corresponding part of the full forward out-
put with the approximated chunk output. This full output is passed
to the back-end and gradients reaching the front-end are only back-
propagated through the approximated chunk. This technique allows
to run the joint training on a single GPU in our case, but even with
larger GPU memory this permits increasing the batch size which in
general speeds up training and produces a smoother gradient.

5. EXPERIMENTS

We carry out experiments on the WSJ database and the commonly
used WSJ0-2mix dataset first proposed in [3]. The data in WSJ0-
2mix is generated by linearly mixing clean utterances from WJS0
(si tr s for training and si et 05 for testing) at ratios randomly chosen
from 0 dB to 5 dB. It consists of two different datasets, namely the
min and max datasets. The min dataset was designed for source
separation and is formed by truncating the longer one of the two
mixed recordings, so that it only contains fully overlapped speech.
We use this dataset for pre-training the Conv-TasNet, but it is not
suitable for joint training where the audio data needs to match the
full transcription. For this need, we use the max dataset that does

not truncate any recordings. We use a sampling frequency of 8 kHz
for both the front- and back-end to speed up the training process. We
remove any labels marked as noisy, i.e., special tokens such as ”lip
smack” or ”door slam”, from the training transcriptions since these
cannot be assigned to one speaker based on speech information by
the front-end which makes their estimation ambiguous.

We evaluate our experiments in terms of Word Error Rate
(WER), Character Error Rate (CER) and, where applicable, by SDR
as supplied by the BSS-EVAL toolbox [20] and SI-SNR [21]. For
the experiments on mixed speech, the metrics are computed for all
possible combinations of predictions and ground truth transcriptions
and the metrics for the permutation that minimizes WER is reported.

5.1. Conv-TasNet time domain source separation

We use the best performing architecture according to [6] and opti-
mize it with the ADAM optimizer [22].3 In particular, following the
hyper-parameter notations in the original paper, we set N = 512,
L = 16,B = 128,H = 512, P = 3,X = 8 andR = 3 with global
layer normalization. For distributing over multiple GPUs, we split
between the three repeating convolutional blocks. Table 1 lists SDR
and SI-SNR performance for our Conv-TasNet model, comparing
the min and max subsets of WSJ0-2mix. It can be seen that our im-
plementation of the Conv-TasNet reaches a comparable performance
on the min dataset when compared to the original paper. There is a
slight degradation in performance on the max dataset caused by the
mismatch of training and test data because the model never saw long
single-speaker regions during training and learned to always output
a speech signal on both outputs, while these regions are present in
the max dataset.

Table 1. SDR and SI-SNR in dB for the min and max test (tt)
datasets of the WSJ0-2mix database.

Dataset SDR SI-SNR

WSJ0-2mix min [6] 15.6 15.3
WSJ0-2mix min (ours) 14.3 13.8
WSJ0-2mix max (ours) 13.8 13.4

5.2. CTC/attention ASR model

We use a configuration similar to [16] without the speaker depen-
dent layers for the speech recognizer. This results in a model with
two CNN layers followed by two BLSTMP layers with 1024 units
each for the encoder, one LSTM layer with 300 units for the de-
coder and a feature dimension of 80. The multi-task learning weight
was set to λ = 0.2. We use a location-aware attention mechanism
and ADADELTA [23] as optimizer. All decoding is performed with
an additional word-level RNN language model. Our ASR model
achieves a WER of 6.4 % on the WSJ eval92 set.

5.3. Joint finetuning

The results of the different fine-tuning variants are listed for com-
parison in Table 2. It is notable that combining the independently
trained models (Conv-TasNet + RNN) already gives a competitive
performance compared other methods (see Section 5.4 and Table 3).
Fine-tuning just the ASR system (+ fine-tune ASR) can further cut
the WER almost in half from 22.9 % to 11.7 %.

Joint fine-tuning without a signal level loss (+ fine-tune joint),
when the system is no longer constrained to transport meaningful

3Our implementation is based on https://github.com/funcwj/conv-tasnet.



Table 2. CER and WER on max test (tt) set of WSJ0-2mix for different variants of fine-tuning. All models are pre-trained.

Model
fine-tune Joint

training type
additional

SI-SNR loss CER WER SDR SI-SNR
front-end back-end

Conv-TasNet + RNN — — — — 13.9 22.9 13.8 13.4
+ fine-tune ASR — 3 single GPU — 6.7 11.7 ” ”
+ fine-tune TasNet 3 — multi GPU — 7.7 14.2 10.5 9.5

+ SI-SNR loss 3 — multi GPU 3 7.7 14.3 12.5 12.1
+ fine-tune joint 3 3 multi GPU — 6.2 11.7 9.8 8.4

+ SI-SNR loss 3 3 multi GPU 3 6.0 11.1 13.8 13.5
+ fine-tune joint TBPTT 3 3 single GPU (TBPTT) — 6.1 11.0 11.7 11.5

+ SI-SNR loss 3 3 single GPU (TBPTT) 3 18.0 23.9 12.4 12.1

Table 3. Comparison of single-channel multi-speaker ASR systems. They differ heavily in their used architecture, training data and technique.
∗: The models are evaluated on mixtures based on WSJ [16, 17] and the WERs are not comparable to the other models.

Model structure pre-
training

joint
training

signal
reconstr.

no paral.
data req.

data
CER WER

train eval

DPCL 3 — WSJ0-2mix
+ DNN-HMM [7] hybrid 3 — 3 — WSJ0 WSJ0-2mix — 16.5
+ CTC/attention [8] E2E 3 — 3 — WSJ0 WSJ0-2mix 23.1 —

+ joint fine-tuning [8] E2E 3 3 3 — WSJ0-2mix WSJ0-2mix 13.2 —
PIT-ASR (best) [10, 17] hybrid — 3 — 3 WSJ0-2mix WSJ0-2mix — 28.2
E2E ASR [17] E2E — 3 — 3 WSJ0-2mix WSJ0-2mix — 25.4
E2E ASR∗ [16] E2E (3) 3 — 3 WSJ-2mix WSJ-2mix 13.2 28.2
E2E ASR∗ [17] E2E — 3 — 3 WSJ-2mix WSJ-2mix 10.9 18.4

joint TasNet (our best) E2E 3 3 3 — WSJ &
WSJ0-2mix WSJ0-2mix 6.1 11.0

speech between front- and back-end, can not improve much over
just fine-tuning the ASR system and significantly lowers the source
separation performance. This indicates that there is enough informa-
tion available for reliable speech recognition in the separated signals
(i.e., retraining of the front-end is not required), but that not all in-
formation required to reconstruct speech is required for ASR.

Using a signal-level loss (+ fine-tune joint + SI-SNR loss) can
further improve the WER to 11.1 %. In this case, the source sepa-
ration performance stays comparable to the Conv-TasNet model. A
signal-level loss helps the model to better separate the speech.

The performance for just fine-tuning the front-end (+ fine-tune
TasNet) cannot reach the performance of fine-tuning the back-end.
This means that it is easier to mitigate the mismatch for the ASR
back-end (i.e., learn to ignore the artifacts produced by the front-
end) than it is for the front-end (i.e., learn to suppress the artifacts).

Comparing the results of the chunk-based fine-tuning (+ fine-
tune joint TBPTT) as an approximation of TBPTT with the full joint
fine-tuning (+ fine-tune joint), it can be seen that even though the
TBPTT-based approach is just an approximation, its performance is
comparable to the full joint model if no signal-level loss is used. It
even performs slightly better, possibly because TBPTT allowed to
use a larger batch size. The slightly odd degradation in performance
for the case with a signal level loss (+ fine-tune joint TBPTT + SI-
SNR loss) might be caused by the signal-level loss penalizing the
approximation heavily, while the gradient propagated through the
ASR system is less harmful. This case was not evaluated further.

5.4. Comparison with related work

This section compares the performance of the different related works
presented in Section 2. Their major differences and performance in
terms of CER and WER are listed in Table 3. While these compar-

isons are not fair because the presented works differ greatly in their
overall model structure, training methods and data, the numbers are
meant to give a rough indication of how these methods compare and
how complex the design space is.

Among the related systems, the hybrid DNN-HMM system still
outperforms all monolithic approaches although this system is not
fine-tuned jointly. On the other hand, the E2E ASR model can out-
perform the jointly optimized hybrid PIT-ASR on the same dataset.
Their WERs, however, are far from the joint DPCL model. Although
not directly comparable, the best results in this table were produced
by cascade models that allow reconstruction of the enhanced sepa-
rated signals (DPCL + ASR, joint TasNet), which suggests that hav-
ing dedicated parts for source separation and speech recognition is
helpful, while joint fine-tuning improves the performance. Our time
domain approach gives the best result in this comparison.

6. CONCLUSIONS

We propose to use a time domain source separation system like
Conv-TasNet as a front-end for a single-speaker E2E ASR system to
form a multi-speaker E2E speech recognizer. We show that indepen-
dently training the front- and back-end already gives a competitive
performance and that joint fine-tuning can drastically improve the
performance. Fine-tuning can be performed jointly with the whole
model distributed over multiple GPUs, but can as well be sped up
roughly by a factor of 2 on a single GPU by approximating TPBTT
for convolutional neural networks, while keeping the performance
comparable. The results suggest that retraining the ASR part can
much better compensate the mismatch between front-end and back-
end than a fine-tuned front-end could.
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