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ABSTRACT

A resource-constrained system monitors a source of informa-
tion by requesting a finite number of updates subject to ran-
dom transmission delays. An a priori fixed update request
policy is shown to minimize a polynomial penalty function
of the age of information over arbitrary time horizons. Par-
tial updates, compressed updates with reduced transmission
and information content, in the presented model are shown to
incur an age penalty independent of the compression. Finite
horizons are shown to have better performance in terms of
second order statistic relative to infinite horizons.

Index Terms— Age of information, remote sensing,
wireless communication

1. INTRODUCTION

Tactile internet is on the horizon for wireless network ser-
vices, if highly responsive connectivity between environment-
facing sensors and user-facing systems is available [1]. Sen-
sor updates must be sparse enough to extend battery life yet
frequent enough to satisfy a given system performance re-
quirement. A pressing question, and the focus of this work,
is to find an update request policy that gracefully maintains
system performance of a resource constrained system.

When actions depend on the most recently sensed data,
system performance degrades as the elapsed time since the
last received update grows. The concept of age of information
(AoI), as presented by Kaul et al. [2], quantifies the system
performance penalty associated with the delay between re-
ceived updates. AoI is a meaningful metric which differs from
delay and throughput by focusing on the time between update
generation and update arrival [3], i.e., AoI is a receiver-centric
measure of delay. Achieving minimal AoI can be nontrivial,
e.g., [4] showed constraining the number of updates makes a
zero-wait policy sub-optimal in terms of AoI.

Results in [5] characterized the impact of various queuing
strategies on the peak AoI. In [6] it was shown that an AoI
threshold strategy minimizes the average AoI under long-term
average update constraints and error-correction techniques.
Work in [7] showed that with adequate queuing strategies the
impact of buffering capacity of intermediary relays becomes
nearly negligible. Non-linear AoI penalties for a randomly
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update generating source were considered in [8]. A coding-
inspired approach where updates vary in information quantity
and bit size was presented in [9]. A system monitoring a ran-
dom source with a finite number of updates was considered
in [10] where a threshold based strategy optimally minimized
the expected estimation error. A controllable update process-
ing time was considered in [11] to minimize AoI constrained
to a distortion metric inversely proportional to the processing
time of updates sent over a deterministic channel. Mutual in-
formation (MI) of a source and destination was proposed as
a measure for AoI in [12], where an MI thresholding strategy
was shown to be optimal. Recently, [13] considered a central
scheduler tasked with minimizing the total AoI by controlling
how updates are relayed from sources to destinations.

The present work is distinguished via the use of a model
that allows for new update requests to be made even if a pre-
vious update has not yet arrived, operates over arbitrary time
horizons, and considers the use of partial updates. The AoI
penalty is a polynomial function of arbitrary degree and fi-
nite first and second moments are assumed computable for
the random delay. Minimization of the total AoI penalty is
obtained by a priori computing update request times. The
impact on AoI penalty of reordering update requests is pre-
sented. Additionally, it is shown that a finite horizon approach
achieves smaller variance of AoI penalty, thus greater stability
can be provided to systems with high reliability requirements.

2. NETWORK MODEL

A monitoring system requests information updates via wire-
less links from a source of information (e.g., a set of sensors).
The system is limited to making at most N ∈ Z+ update re-
quests over a time period T ∈ R+. Note that NT can serve as
an average update constraint or a constraint on energy if an
energy per update ratio is introduced.

Define i ∈ {1, ..., N} as a labeling of the N updates,
t : 0 ≤ t ≤ T, t ∈ R as a time index, δi ∈ [0, T ] as the depar-
ture time of the i-th update request. W.l.o.g., labels are such
that δi ≤ δj ∀ i < j ∈ {1, ..., N}. Define di as the transmis-
sion time of update i, modeled as a continuous strictly positive
random variable with finite first and second moments. Statis-
tics of all transmission times are assumed independent from
each other, but not identical to allow the model to account for
the N updates to arrive from potentially N distinct sensors.
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Define αi = δi + di as the arrival time of update i.
To account for, either, multiple paths between system and

sensors or higher layer mechanisms giving sequential requests
different delays (e.g., exponential backoff in 802.11), assume
new update requests can be made even if a previous update
has not yet arrived. At time t, define the freshest update u(t)
as arg maxi δi : αi ≤ t with u(t) = 0 ∀ t < α1, i.e., the
freshest update is a received update that was generated most
recently. Update i is said to be useful if ∃ t : i = u(t) else the
update is wasted.

Define δ = {δi ∀ i} as a policy, and note that the system
only controls what policy is used. Policy selection impacts
the system penalty function, defined as a function which is
discontinuous at reception of useful updates and otherwise
monotonically increasing with time. Related literature names
this penalty function the age of information and is defined as

Ak(t, δ) = Ck(t− αu(t) + du(t))
k (1)

with k ≥ 1, Ck ∈ R+ as a scaling value, A0 ∈ R+ as an ini-

tial age, and d0 =
(
A0

Ck

)1/k
. Define the set of useful updates

αu = {αj ∀ j : ∃ t, u(t) = j} ∪ {au0 = 0, auN+1 = T} and
the total penalty can be defined as

Sk(δ) =

N∑
i=0

∫ αu
i+1

αu
i

Ak(t, δ)dt, (2)

where Ak(t, δ) is evaluated from inside the integration pe-
riod. Note that Sk(δ) is a random variable.

If a policy δ achieves Sk(δ) with N updates, then there
exists a policy with N + 1 updates with no larger a total
penalty (e.g., the same N departure times and random depar-
ture time of the extra update). Furthermore, if a policy with
N + 1 useful updates exists, then a lower total penalty can be
guaranteed. The problem of interest is to obtain an optimal
policy, i.e.,

δ∗ = arg min E[Sk(δ)]. (3)

Note, an optimal policy has a penalty no greater than any
other policy when averaged over many instances of length T .

3. OPTIMAL SOLUTION: CRITICAL AGE POLICY

First, a set of feasible solutions for (3) for a given limited
expected peak age is defined. Then, a proof for the existence
of an optimal solution and method to find an optimal policy
are presented.

To account for discontinuities due to update reception in
(1), define f−(t) = lim

t′→t−
f(t′) and f+(t) = lim

t′→t+
f(t′) for

some function f(t). Define an arbitrary limit on the expected
peak age as the critical age AC . For a critical age AC >
A−k (E[d1], δ), the critical policy is defined as

δC = {δCi : E[A−k (t, δC)] ≤ AC ∀ t}, (4)

else if AC ≤ A−k (E[d1], δ), the critical policy δC is

δC = {δC1 = 0, δCi : E[A−k (t, δC)] ≤ AC ∀ t > α1}, (5)

where (5) sets δC1 = 0 to mitigate A0 as quickly as possible
sinceAk is smaller than the age at the earliest expected arrival
of the first update (i.e., if δ1 = 0 then E[α1] = E[d1]).

For a given N , define the set of all critical policies as PN .
A critical age of 0 < AC < maxiE[di] cannot be guaranteed
by any critical policy. Thus, among all policies in PN there
exists a minimal AC . Define δ∗ := arg minδ∈PN

AC as the
critical policy with smallest critical age A∗ := minδ∈PN

AC .
Theorem 1 asserts that a critical policy solves (3).

Theorem 1. A critical policy δ∗ ∈ PN obtains an average
total penalty no greater than any other policy.

Proof. Define a policy that differs from δ∗ in at least one el-
ement, i.e., δ′ : ∃ δ′i 6= δ∗i . Furthermore, define a subset
of all the differing elements as M = {m : δ′m 6= δ∗m, 1 ≤
m ≤ N}. Assume that δ′ and δ∗ have equal numbers of
useful updates, else δ′ can be improved upon. Define ∆m =
(δ′m − δ′m−1) − (δ∗m − δ∗m−1) ∀ m ∈M , with δ′0 = δ∗0 = 0
for completeness, as the temporal shift between the policies
for consecutive departures of updates in the setM .

Delay, i.e. di ∀ i, is a policy independent stochastic pro-
cess, thus A+

k (α∗m, δ
∗) = A+

k (α′m, δ
′) and the penalty in-

curred by δ′ for t ∈ [α′m,min(α∗m+1−∆m, α
′
m+1)] is equally

incurred by policy δ∗ for t ∈ [α∗m,min(α∗m+1, α
′
m+1−∆m)].

Focus on the penalty incurred during the remaining time
period of length |∆m|. First, if |∆m| = 0 then the impact of
update m for policy δ′ is equivalent and time shifted version
of the impact of update m for policy δ∗. Note that ∃ m :
|∆m| 6= 0 since both policies have an equal and finite number
of useful updates and T is finite. Note that the time period
of length |∆m| need not be a continuous subset of the time
period [0, T ].

Second, if δ∗1 6= 0, then over any time period of length
|∆m| the policy δ∗ incurs a total penalty no greater than
|∆m|AC . Alternatively, if δ∗1 = 0 the total penalty incurred
by both policies over time period [0, α1] is equivalent, and for
δ∗ no greater than |∆m|AC for any period of length |∆m| in
the interval [α1, T ].

Third, for any ∆m > 0 (i.e., transmitting later than δ∗)
policy δ′ incurs a total penalty no less than |∆m|AC at a
time period after α∗m since the penalty function is monoton-
ically increasing. For any ∆m < 0 (i.e., transmitting earlier
than δ∗) policy δ′ incurs a penalty after α′m equivalent to the
penalty incurred by δ∗ after α∗m; yet since T and N are fi-
nite there exists a period of length |∆m| for which δ′ incurs a
penalty greater than |∆m|AC .

Essentially, any deviation from the optimal policy δ∗

creates a temporal shift of the penalty function. Since the
penalty function is non-negative and positive monotonic, a



Fig. 1: Example of possible differences between δ∗ and δ′.
Updates m and m + 1 cause a greater penalty in δ′, while
update m+ 2 does not by itself cause a penalty difference.

larger penalty is incurred. Fig. 1 illustrates possible values of
∆m as described in the previous proof.

Construction of δ∗ provides one equation for each of the
N departure times δi with N + 1 variables, i.e., the N depar-
ture times plus the critical age AC . The additional equation
necessary to make the system solvable comes from realizing
that at time T the age should also not exceed AC . Thus a
critical policy δ∗ satisfies the following:

A−k (δ∗i + E[di], δ
∗) = A∗ ∀ i and A−k (T, δ∗) = A∗, (6)

from which one can obtain the value of

A∗ = Ck

(
A0 + T +

∑N
i=1E[di]

N + 1

)k
. (7)

Furthermore, one can obtain

δ∗N =
NT −A0 −

∑N
i=1E[di]

N + 1
(8)

and then recursively solve for the remaining N − 1 values.
Finally, the average total penalty incurred by policy δ∗ is

Sk(δ∗) =

N∑
i=0

Ck

[(
δ∗i+1 + E[di+1]− δ∗i

)k+1 − E[di]
k+1
]

(k + 1)
,

(9)
with δ∗0 = d0 = −A1/k

0 , dN+1 = 0, and δ∗N+1 = T defined
for completeness and compactness.

For large values of A0 or E[di], e.g., A0 > NT −∑N
i=1E[di], optimal departure times may become negative,

cf. (8). In such cases, the first update is δ1 = 0 and the prob-
lem is recast with the remaining N − 1 departures. While
optimal departure times for any value of k are equivalent, the
critical age of the policy is distinct.

Augmenting a policy with additional useful updates de-
creases the total age penalty. Yet, reordering update requests

can turn a useful update into a wasteful update. In the sim-
ple case when all N update requests experience statistically
equivalent delays, the time between any two consecutive de-
partures is constant. Formally, if E[di] = E[dj ] ∀ i, j then
δ∗i − δ∗i−1 = δ∗j − δ∗j−1 ∀ i, j. Meaning, if all updates are
transmitted over the same stationary wireless channel, then a
constant time period between update requests is optimal and
reordering updates does not impact the solution of (3).

Now, consider only the case when ∃ i, j : E[di] 6= E[dj ].
First, if k = 1 and A0 = 0 then any achievable value of AC

by a policy δ∗ is achievable by any reordering of the update
requests with a different policy. This follows from (7) being
independent of δ∗ and A0 = 0. Second, if A0 >> 0 the first
departure may be forcefully fixed to δ1 = 0 to mitigate the
penalty as soon as possible. Intuitively, when reordering is
possible and a value of A0 is large enough that δ∗1 = 0, then
the first update should be requested from the source with min-
imum delay, i.e., reorder such that arg miniE[di] = 1. Third,
if only the first element is forcefully fixed due to a large ini-
tial penalty, then the remaining N − 1 elements can achieve
equivalent average total age penalty with any reordering. Re-
ordering, as described, does not impact A∗ but does impact
the values of δi ∈ δ∗.

4. PARTIAL UPDATES

In this section, and only this section, consider that an update
can be compressed to reduce transmission time and informa-
tion content (i.e., lossy compression). The compressed update
is a partial update, i.e., for update i with transmission time
di has a corresponding partial update with transmission time
dp such that E[dp] < E[di] and A+

k (αi, δ) < A+
k (αp, δ) if

A−k (αi, δ) = A−k (αp, δ). Compare with [9] where a partial
update was a lossless compressed version of a full update.

Assume a partial update resets the AoI to the AoI at re-
ception of the previous useful update. Meaning, for a partial
update p ∈ {1, ..., N} at time t such that p = u(t) define
the previous update arrival time as t′ = limε→0 αu(t−ε) with
α0 = 0, and A+

k (αp, δ) := A+
k (t′, δ). Thus, the partial up-

date provides no fresher information than that of the previ-
ous update. Such a model for partial update inherently favors
the use of partial updates over a full update whenever the ex-
pected delay increases the AoI penalty no greater than the
penalty at the previous update arrival.

An optimal critical policy (cf. Section III) using only par-
tial updates, i.e., δp, can lead to a total penalty that is inde-
pendent of transmission times. E.g., with k = 1 the optimal
critical policy creates a sawtooth wave of N +1 peaks that go
from A0 up to A0 + Ck

T
N+1 thus obtaining a total penalty of

Sk(δp) =
CkT

2

2(N + 1)
+A0T. (10)

Note the lack of dependence of (10) on the update delay,
meaning that reduced delay of a partial update does not im-



Fig. 2: Avg. Penalty per Horizon Sk(δ∗)/T as a function of
T . t T > 100, the Unknown Horizon outpreforms the Infinite
Horizon, and at T > 250, the scenarios are comparable.

pact the performance. When the delay of full updates is di ≤
Ao

C ∀ i, then a policy of only full updates will not incur a larger
total linear penalty than a policy of only partial updates.

5. IMPACT ON SECOND ORDER STATISTICS

Fixing N and increasing T leads to an increase in (3), while
fixing T and increasing N can decrease (3). Fixing the ratio
N
T allows for arbitrary, yet equal, growth in N and T which
maintains equivalent average resource consumption. From
(7) one can infer that increasing N and T at the same rate

will driveA∗ towards Ck
(
T
N + E[di]

)1/k
where E[di] is the

arithmetic mean of expected delays.
From (9), note that increasing N and T by equal amounts

leads to an increase in the total penalty Sk(δ∗). Adding to the
growth in average penalty is the negative impact on the vari-
ance of the penalty experienced over many realizations, de-
fined as σ2

Sk(δ∗). With (9) upper and lower bounded by TA∗

and min(A0, E[di] ∀ i), respectively, one can use Bhatia-
Davis’ inequality [14] to upper bound the variance as

σ2
Sk(δ∗) <

(
TA∗ − Sk(δ∗)

) (
Sk(δ∗)−min(A0, E[di] ∀ i)

)
(11)

where various refinements can be done if additional assump-
tions are made [15]. Now, if increasing N and T is done such
that the additional update requests do not reduce the value of
min(A0, E[di] ∀ i), then one can expect the variance of the
total penalty incurred to increase with N and T . Therefore, a
shorter horizon (i.e., smaller T ) can lead to smaller values of
σ2, and ultimately more stable performance from the system.

The elapsed time before the system is set to initial con-
ditions defines the horizon T . Defining initial conditions is
where system engineering comes into play. A system where
delay is temporally stationary has a horizon T = ∞, while a
system where the estimated statistics on delay are applicable
for a finite amount of time before they need to be re-estimated

Fig. 3: Standard deviation of σ2
Sk(δ∗) as a function of T . Infi-

nite Horizon underperforms among evaluated scenarios.

has a horizon T < ∞. Horizon selection impacts second or-
der statistics, as suggested by (11) and analyzed in the sequel.

6. SIMULATION RESULTS

Simulation parameters are set to N
T = 0.4, A0 = 0, k =

1, Ck = 1, and di ∼ U(0, 1). Three scenarios are evaluated.
Infinite Horizon solves (3) with T =∞. Known Horizon uses
T as the horizon. Unknown Horizon concatenates periods of
length 1000

T , using N
T updates per period, and the penalty at

the end of one period is the initial age of the next period.
Fig. 2 shows E[Sk(δ

∗)
T ] as a function of T , where a lower

value on the vertical axis implies better performance. Intu-
itively, using larger T moves all scenarios towards the Infi-
nite Horizon scenario. Note the existence of a trade-off point
(T < 100) where assuming an infinite horizon is a better
strategy than estimating an unknown horizon. The Unknown
Horizon scenario suffers from the initial age carried over from
previous periods, thus its performance improves with increase
in T . When the horizon is known, a smaller horizon allows
for a finer control of resources, thus a smaller penalty. In Fig.
3 the standard deviation of Sk(δ

∗)
T is shown as a function of

T , where a lower value implies better performance. Assum-
ing an infinite horizon leads to a larger standard deviation, and
a greater variation in performance.

7. CONCLUSION

An update request policy that minimizes the average informa-
tion age penalty of a resource constrained monitoring system
with stochastic update delay has been presented. The optimal
departure times have been obtained by solving a linear sys-
tem of equations which grows with the available number of
updates. Results have also outlined that using partial updates
incurs a total age independent of delay, but is only beneficial
when the delay reduction outweighs the increase in age.
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