
EFFICIENT BIRD SOUND DETECTION ON THE BELA EMBEDDED SYSTEM

Alexandru-Marius Solomes and Dan Stowell

Machine Listening Lab, Centre for Digital Music, Queen Mary University of London

ABSTRACT

Monitoring wildlife is an important aspect of conservation
initiatives. This paper proposes an automatic detection algo-
rithm for the Bela embedded Linux device for wildlife mon-
itoring. The program is capable of computing on-board de-
tection using convolutional neural networks (CNNs) with an
AUC score of 82.5% on the testing set of an international data
challenge. This paper details how the model is exported to
work on the Bela Mini in C++, with the spectrogram genera-
tion and the implementation of the feed-forward network, and
evaluates its performance on the Bird Audio Detection chal-
lenge 2018 DCASE data.

Index Terms— embedded, bioacoustics, acoustic, detec-
tion, deep learning

1. INTRODUCTION

The distribution of birds within a habitat is expected to change
in number and density as the impacts of climate change and
land use come about in future years [1]. In the UK alone, there
are over 150 species of birds requiring monitoring with over
60 needing the highest conservation priority [2]. Many birds
are easily detectable by their calls, making acoustic monitor-
ing appropriate. The advent of machine learning for big data
gave rise to open-source initiatives that have pushed the state-
of-the-art in acoustic detection to new heights. In the field of
bird audio detection, data challenges such as those organized
by DCASE,1 have produced state-of-the-art results, with mul-
tiple methods attaining a performance of around 88% area un-
der the receiver operating characteristic (ROC) curve (AUC)
[3].

Nonetheless, outside-of-the-lab solutions for implement-
ing these models are still behind this trend. Model training, in
the lab, is usually performed in high-level programming lan-
guages such as Python. When the end-goal for such a model is
applying its learned knowledge to the environment around it,
machine learning intersects with the Internet of Things (IoT)
[4]. For efficiency and speed on a lower spec resource, the
model must be transferred to a lower-level language.

Supported by EPSRC fellowship EP/L020505/1.
1http://dcase.community/challenge2018/

task-bird-audio-detection

In this field, the CMSIS-NN2 library aims to be the on-
the-edge detection standard, providing a C API for Cortex-M
processors. Using this library, [5], train a convolutional neural
network (CNN) on the CIFAR-10 dataset using the Caffe API,
load the learned weights onto a Nucleo-f746zg3 and evaluate
its performance. Due to the memory constraints of the embed-
ded system, they use the partial im2col data structure, which
leaves a smaller memory footprint. In another paper, Lay et
al. present a framework based on the CMSIS-NN aimed for
on-the-edge learning [6]. They focus on optimizing floating-
point errors and show that their solution, KANJI, can remove
deployment challenges.

The literature on embedded systems for the task of
wildlife monitoring, however, has not yet adopted this frame-
work. Prior work runs a Python-based model directly, despite
the power and computational overhead this implies [7]; or
alternatively stores/transmits the data for processing off-site
[8]. In translating a model to a low-power system, the con-
straints mainly lie in implementing a system capable of not
only performing inference but also transforming the input
signal before the inference (i.e. feature extraction and prepro-
cessing) within the limitations of a low power system. An
example of an initiative that comes close is the AudioMoth
4 designed by Open Acoustic Devices. The AudioMoth
features powerful algorithms used for frequency-based detec-
tion where the input signal is scanned using Goertzel filters
[9]. This device works well when separating signal from
background noise can be done at the frequency level (bats,
insects). When the signal is more complex, however, devices
like the AudioMoth suffer from high memory requirements.

This paper implements state-of-the-art bird detection al-
gorithms on the Bela Mini embedded system. The Bela Mini
is a device created at Augmented Instruments Laboratory5,
in the Centre for Digital Music at Queen Mary University
of London. It features a custom audio processing environ-
ment, an audio driver using the Programmable Realtime Unit
(PRU), running the Xenomai real-time Linux extensions [10].
This system architecture allows the Bela to prioritize audio

2CMSIS-NN: http://www.keil.com/pack/doc/CMSIS_Dev/
NN/html/index.html

3https://www.st.com/en/evaluation-tools/
nucleo-f746zg.html

4AudioMoth: https://www.openacousticdevices.info/
audiomoth

5AIL: http://instrumentslab.org/

http://dcase.community/challenge2018/task-bird-audio-detection
http://dcase.community/challenge2018/task-bird-audio-detection
http://www.keil.com/pack/doc/CMSIS_Dev/NN/html/index.html
http://www.keil.com/pack/doc/CMSIS_Dev/NN/html/index.html
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html
https://www.openacousticdevices.info/audiomoth
https://www.openacousticdevices.info/audiomoth
http://instrumentslab.org/


code other system tasks, making ideal for sound applications.
Moreover, Bela’s 512 MB of RAM; CPU speed of up to
1GHz; and onboard IDE make it highly appropriate for the
prototyping and deployment of deep learning algorithms.

The model architecture chosen is inspired by the winning
entry for the Bird Audio Detection (BAD) challenge [3] —
the ’bulbul’ network submitted by Grill and Schlüter [11]. On
top of this, we propose our version of the ’bulbul’ network,
which features fewer learnable parameters and achieves better
results on the test set. We implement both models on the Bela
Mini, providing a small-footprint C++ library that requires no
external code libraries (i.e. aiming for a smaller footprint than
CMSIS-NN). Finally, we evaluate their performance on the
Bela Mini, with a focus on computation speed and floating-
point errors.

2. MODEL ARCHITECTURE

The models we implement in the Bela Mini is based on the
model introduced by Grill and Schlüter [11], the winners in
the Bird Audio Detection Challenge. The table below illus-
trates the two very closely-related architectures we evaluated:

Table 1: Network Architectures
Model A Model B

Input 1× 1000× 80 Input 1× 998× 80
Convolution (3× 3) 16× 998× 78 Convolution (3× 3) 16× 996× 78
Max-pooling (3× 3) 16× 332× 26 Max-pooling (3× 3) 16× 332× 26
Convolution (3× 3) 16× 330× 24 Convolution (3× 3) 16× 330× 26
Max-pooling (3× 3) 16× 110× 8 Max-pooling (3× 3) 16× 110× 8
Convolution (3× 1) 16× 108× 8 Convolution (3× 3) 16× 108× 6
Max-pooling (3× 1) 16× 36× 8 Max-pooling (3× 1) 16× 36× 6
Convolution (3× 1) 16× 36× 8 Convolution (3× 3) 16× 34× 4
Max-pooling (3× 1) 16× 11× 8 Max-pooling (3× 1) 16× 11× 4

Dense 256 Dense 256
Dense 32 Dense 32
Dense 1 Dense 1

Trainable Parameters 373, 713 Trainable Parameters 196, 561

The input to both models is spectrogram images, normal-
ized to 10 seconds in duration, with 80 triangular filters con-
verted to Mel-scale. We use a window size of 1024 samples,
computed at a sample rate of 44.1 kHz, with hop size of 1102
and a stride of 441 frames with a minimum frequency of 0 Hz
and a maximum of 22.5 kHz. In model A, the Mel-frequency
spectrograms pass through a convolution layer, where the bias
and 16 kernels of congruent dimension 3, learn different spa-
tial and temporal dependencies by convolving over the image,
with a stride of 2. Next, the resulting output goes through a
max-pooling layer, suppressing the noise with a sliding win-
dow of congruent dimension 3. These two steps are repeated
one more time, by when the initial image shrunk to a size of
16 × 110 × 8. The next two sets of convolution and max-
pooling layers have sliding windows of dimension 3× 1. Fi-
nally, three fully-connected layers are applied to give the pre-
diction. All convolution and dense layers go through a leaky
rectifier unit, except for the final layer - using a sigmoid in-
stead. Model B has a similar architecture to model A, the

main difference lies in third and fourth convolution layers
which execute a 3× 3 convolution, halving trainable parame-
ters.

Model training was done using stochastic gradient descent
on mini-batches of 64, using the same parameters as Grill
and Schlüter [11], namely: ADAM update and 0.001 learn-
ing rate.

3. IMPLEMENTATION DETAILS

Transferring the model to the Bela requires a method of read-
ing the weights, learned in Keras, in C++. We specified the
following simple text file format:

Listing 1. Extended Backus-Naur representation of model
weights in text file format (.txt)

num l a y e r s
{ l a y e r name

d1
d2
d3
d4
{w e i g h t s }

}

The start of the file states the number of layers the model
contains. Each curly brace denotes a repetition, made up of a
name-value, dimensions, and weights. This representation of
the model allows a base four-dimensional C++ data structure
to store these values inside of a vector container. This vec-
tor container is used by the feed-forward program to know
which operation to execute at a time and makes use of pointer
arithmetic to access each of the layer’s input weights.

The Bela API consists of three functions: a setup function,
a render function, and a cleanup function. The setup function
initializes pointers to the objects used in the detection pro-
gram, including spectrogram and classifier objects. The ren-
der function is the function that is regularly called by Bela’s
PRU [10]. In the render function, a state machine switches
between recording a sufficient duration of audio, performing
the deep learning inference and saving the sound signal (if a
positive detection occurs). Finally, in the cleanup function,
pointers created in setup are deleted.

4. EVALUATION

We evaluate the model in two stages: first on how well they
perform detection according to the data sets of the the Bird
Audio Detection Challenge, and second on how efficiently
they perform on the Bela embedded Linux device. In the first
step (Section 4.1), we use the AUC measure - the metric of
choice in the challenge. The challenge evaluates submissions
on their ability to perform general-purpose detection. The



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC plot (not stratified) for AlexMS_AlexMS
AlexMS_AlexMS_task3_1
AlexMS_AlexMS_task3_2

Fig. 1. ROC plots for our C++ implementations of the two
systems tested on Bird Audio Challenge data: bulbul (shown
as ‘1’/blue), and our smaller network (‘2’/orange). Note that
this is calculated across all 3 of the testing datasets aggregated
together. The official score (quoted in the text) is a stratified
score calculated from each testing set scored separately. Com-
pare Fig 2 in [3].

AUC measure generalises over possible thresholds which the
model could be tuned for, which unlike accuracy it remains
unaffected by ‘unbalanced’ test sets [3].

In the second step (Section 4.2), we time how long the de-
vice takes to run the prediction algorithm. We do this by mea-
suring the time required to compute the spectrogram and total
time to make the prediction (spectrogram plus feed-forward).

4.1. Detector performance

On the validation data used during training, both models
achieve an AUC of 94%, with model A requiring double the
epochs to reach this, which we attribute to its increased com-
plexity. On the official test data of the Bird Audio Detection
challenge 2018, however, it is model B which performs best
setting itself apart from model A with an AUC of 82.5%.
Model A achieves an AUC of 80.0%. We attribute this 2% in-
crease to the reduced complexity of model B, which features
47.4% fewer parameters, and thus less scope for overfitting.

We implemented both models on the edge device and
do not make any further attempts to optimize the detection
scores, focusing instead on implementation and performance
on the Bela Mini.

4.2. Edge performance

We tested both models on the Bela Mini, measuring computa-
tion time of the network and the spectrogram generation pro-
grams. Fig 2 plots the empirical distribution of time taken
for both models. The collection was carried out by measuring
the time (in seconds) the system took to carry out the pre-
diction, from input to prediction output. Although model B
had fewer parameters, model A took less time as model A
loops over fewer elements in the convolution layers. The
mean time difference between both, however, is only 0.146
seconds. It is useful to note, however, that although this is a
relatively short time to wait for a prediction, the system needs
to compute a 10-second Mel-spectrogram before the predic-
tion phase. This step takes an average of 3.98 seconds un-
der the current implementation and increases total prediction
time substantially. However, the spectrogram settings can be
changed in the code. For example, reducing the sample rate
to 22.05 kHz and the FFT window size to 512 results in an
average time of 2.14 seconds to compute the spectrogram.

We also compare the predictions of the model in C++ with
the predictions of the original model in Keras for 2, 000 files
in the test set. The mean absolute error (MAE) between keras
predictions and C++ predictions, taken at Keras’ precision
(1e−7, or float32)6 is 6.33e−8.

The table below, illustrates the accumulation of small dis-
crepancies in floating-point processing between the two im-
plementations for the 5 instances with the highest MAE:

Table 2: Test set precision of worst 5 cases
File name Keras output Model output Difference

4eb32628-d7a4-448e-91e9.wav 0.68623024 0.68623072 −4.80e−7
286dd5a5-420f-4630-a565.wav 0.34130067 0.34130117 −5.00e−7
f0721db1-8a4e-451d-afd2.wav 0.46779215 0.46779278 −6.30e−7
753cdaaa-1b68-4e89-a079.wav 0.51409733 0.51409799 −6.60e−7
7d47e2a9-d26f-4ab5-9256.wav 0.53456223 0.53456295 −7.20e−7

5. DISCUSSION

In this paper, we implement a sound detection algorithm on
the Bela Mini embedded system, highlighting the device’s
easy to use development environment and ultra-low latency
audio processing environment, prioritising audio over other
operating system processes. Our work goes beyond previous
work on embedded deep learning for bioacoustics [7] in that it
works towards an implementation that can work under lower
constraints of power, computation, and memory.

We have presented two deep learning models for this em-
bedded Linux system for detecting bird calls in audio record-
ings. Out of the two models, model B would rank among the
top 4 models in the competition, with an AUC score of 82.5%,
with both models emphasising Bela as a viable solution for
fast prototyping and deployment.

For an indication of how much our detector improves
wildlife data logging, we can use our ROC results to indi-

6https://keras.io/backend/

https://keras.io/backend/


1.443 1.444 1.445
Duration of prediction (s)

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

model-A

1.588 1.589 1.590 1.591
Duration of prediction (s)

0

100

200

300

400

500

600

model-B

Fig. 2. Recording duration of our implementations on the
Bela Mini. Model A varies between 1.44 and 1.45 seconds,
while model B varies between 1.59 and 1.60 seconds

cate what would happen in a typical configuration. Choose
a true-positive rate of 80%, which implies a false positive
rate of around 40% (Figure 1). In a monitoring situation
with animals active in 10% of the recorded frames, we thus
expect the detector to trigger in 12% of cases. This enables
an eight-fold reduction in the amount of data stored to disk,
or an eight-fold increase in the time the device can be active
before storage is full.

6. DATA ACCESSIBILITY

• Development and testing sets:

http://dcase.community/challenge2018/
task-bird-audio-detection

• Spectrogram generation code: https://github.
com/alexandrusoloms/Bela-Spectrogram

• Feed-forward network code: https://github.
com/alexandrusoloms/KerasToCpp/tree/
feature/my-keras-to-cpp

7. REFERENCES

[1] Alison Johnston, Malcolm Ausden, Andrew M. Dodd,
Richard B. Bradbury, Dan E. Chamberlain, Frédéric
Jiguet, Chris D. Thomas, Aonghais S. C. P. Cook,
Stuart E. Newson, Nancy Ockendon, Mark M. Re-
hfisch, Staffan Roos, Chris B. Thaxter, Andy Brown,
Humphrey Q. P. Crick, Andrew Douse, Rob A. Mc-
Call, Helen Pontier, David A. Stroud, Bernard Cadiou,
Olivia Crowe, Bernard Deceuninck, Menno Hornman,
and James W. Pearce-Higgins, “Observed and predicted
effects of climate change on species abundance in pro-

tected areas,” Nature Climate Change, vol. 3, pp. 1055,
Nov 2013, Article.

[2] Brown AF Hearn RD Lock L Musgrove AJ Noble DG
Stroud DA Eaton MA, Aebischer NJ and Gregory RD
(2015), “Birds of Conservation Concern 4: the popu-
lation status of birds in the United Kingdom, Channel
Islands and Isle of Man.,” 2015.

[3] D. Stowell, Y. Stylianou, M. Wood, H. Pamuła, and
H. Glotin, “Automatic acoustic detection of birds
through deep learning: the first Bird Audio Detection
challenge,” Methods in Ecology and Evolution, vol. 16,
no. 153, pp. 368–380, Apr. 2019.

[4] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabet-
sos, and Dionisis Kandris, “A review of machine learn-
ing and iot in smart transportation,” Future Internet, vol.
11, no. 4, 2019.

[5] Liangzhen Lai, Naveen Suda, and Vikas Chandra,
“CMSIS-NN: Efficient neural network kernels for ARM
Cortex-M CPUs,” 2018.

[6] Liangzhen Lai and Naveen Suda, “Rethinking ma-
chine learning development and deployment for edge
devices,” 2018.

[7] Oisin Mac Aodha, Rory Gibb, Kate E. Barlow, Ella
Browning, Michael Firman, Robin Freeman, Briana
Harder, Libby Kinsey, Gary R. Mead, Stuart E. New-
son, Ivan Pandourski, Stuart Parsons, Jon Russ, Abigel
Szodoray-Paradi, Farkas Szodoray-Paradi, Elena Tilova,
Mark Girolami, Gabriel Brostow, and Kate E. Jones,
“Bat detective—deep learning tools for bat acoustic sig-
nal detection,” PLOS Computational Biology, vol. 14,
no. 3, pp. 1–19, 03 2018.

[8] Sarab S Sethi, Robert M Ewers, Nick S Jones, David
Orme, and Lorenzo Picinali, “Robust, real-time and au-
tonomous monitoring of ecosystems with an open, low-
cost, networked device,” Methods in Ecology and Evo-
lution, vol. 9, no. 12, pp. 2383–2387, 2018.

[9] Andrew P. Hill, Peter Prince, Jake L. Snaddon,
C. Patrick Doncaster, and Alex Rogers, “AudioMoth:
A low-cost acoustic device for monitoring biodiversity
and the environment,” HardwareX, vol. 6, pp. e00073,
2019.

[10] Andrew McPherson and Victor Zappi, “An environment
for submillisecond-latency audio and sensor processing
on BeagleBone Black,” in Audio Engineering Society
138th Convention, 2015.

[11] T. Grill and J. Schlüter, “Two convolutional neural net-
works for bird detection in audio signals,” in 2017 25th
European Signal Processing Conference (EUSIPCO),
Aug 2017, pp. 1764–1768.

http://dcase.community/challenge2018/task-bird-audio-detection
http://dcase.community/challenge2018/task-bird-audio-detection
https://github.com/alexandrusoloms/Bela-Spectrogram
https://github.com/alexandrusoloms/Bela-Spectrogram
https://github.com/alexandrusoloms/KerasToCpp/tree/feature/my-keras-to-cpp
https://github.com/alexandrusoloms/KerasToCpp/tree/feature/my-keras-to-cpp
https://github.com/alexandrusoloms/KerasToCpp/tree/feature/my-keras-to-cpp

	 Introduction
	 Model Architecture
	 Implementation details
	 Evaluation
	 Detector performance
	 Edge performance

	 Discussion
	 Data ACCESSIBILITY
	 References

