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ABSTRACT

Sequence-to-sequence text-to-speech (TTS) is dominated by
soft-attention-based methods. Recently, hard-attention-based
methods have been proposed to prevent fatal alignment errors, but
their sampling method of discrete alignment is poorly investigated.
This research investigates various combinations of sampling
methods and probability distributions for alignment transition
modeling in a hard-alignment-based sequence-to-sequence TTS
method called SSNT-TTS. We clarify the common sampling
methods of discrete variables including greedy search, beam search,
and random sampling from a Bernoulli distribution in a more general
way. Furthermore, we introduce the binary Concrete distribution to
model discrete variables more properly. The results of a listening test
shows that deterministic search is more preferable than stochastic
search, and the binary Concrete distribution is robust with stochastic
search for natural alignment transition.

Index Terms— speech synthesis, deep learning, sequence-to-
sequence model

1. INTRODUCTION

Sequence-to-sequence TTS is a relatively new TTS approach.
Because it can model complex alignments between source and
target without an external aligner, a sequence-to-sequence TTS
system can be trained in an end-to-end fashion, which makes it
straightforward to leverage large-scale speech corpora. Among the
various sequence-to-sequence frameworks, the one with attention
is the most effective and has been used in many recently proposed
TTS systems [1, 2, 3, 4, 5]. Some of these systems, e.g., Tacotron2
[4], can produce speech waveforms with human-level quality and
naturalness. Despite the high-quality synthesized speech, attention-
based sequence-to-sequence TTS systems suffer from alignment
errors such as skipping and repetition, and some systems have even
reported high alignment error rates [3, 6, 7]. Possible reasons for the
alignment errors may include the undesirable flexibility of the soft
attention used in those systems and the way of predicting alignment
from soft attention.

Recently, we proposed a brand new sequence-to-sequence TTS
framework based on hard attention [8]. This framework was inspired
by the segment-to-segment neural transducer (SSNT) [9] and uses
hard monotonic alignment instead of a soft one. Thanks to the
monotonic design, our SSNT-based TTS system, which is called
SSNT-TTS, can avoid the fatal alignment errors that are commonly
observed in soft-attention-based frameworks. However, we found
that SSNT-TTS suffered different types of alignment errors, such
as underestimation and overestimation of phone duration. As a

result, SSNT-TTS did not outperform the major soft-attention-based
methods such as Tacotron [1].

SSNT-TTS represents hard alignment in probabilistic form
and explicitly parameterizes the transition probability as a random
variable. However, such an explicit way of modeling alignment
turns out to be challenging. One issue is to how choose the proper
probability distribution function (PDF) and a sampling method for
alignment transition. In our previous work, we tried the simplest
method based on greedy search [10] and random sampling [8],
and there remains obvious room for further improvements. In
the present work, we investigate more sophisticated approaches
for modeling the probability distribution and sampling alignment
for SSNT-TTS. We also investigate the perceptual impact of the
proposed approaches on the naturalness of synthetic speech.

In Section 2 of this paper, we describe the background of SSNT-
TTS, and in Section 3, we introduce the probability distribution and
sampling methods for hard alignment. In Section 4, we discuss
the experiments and results of the sampling methods under various
conditions. We conclude in Section 5 with a brief summary and
mention of future work..

2. BACKGROUND OF SSNT-TTS

SSNT-TTS models output acoustic features y1:J given input
linguistic features x1:I (such as phonemes or text) by marginalizing
the joint probability of y1:J and alignment z conditioned on the input
x1:I :

p(y1:J | x1:I) =
∑
∀z

p(y1:J , z | x1:I). (1)

The joint probability in equation (1) can be decomposed into
products of alignment probability and output probability given the
alignment at each time step under the first order Markov assumption:

p(y1:J , z | x1:I) ≈
J∏
j=1

p(zj | zj−1,y1:j−1,x1:I)p(yj | y1:j−1, zj ,x1:I), (2)

where zj = i denotes the alignment between the input step i ∈
{1, · · · , I} and the output step j ∈ {1, · · · , J}.

While the output probability in equation (2) can be an isotropic
Gaussian distribution p(yj | y1:j−1, zj ,x1:I) = N (yj ;µ, σ

2I),
the alignment probability can be represented by introducing binary
alignment transition variable ai,j ∈ {Emit, Shift}. This variable
ensures the monotonic structure of the alignment: Emit means the
alignment keeps the current input position (i.e., {zj−1 = i, zj = i}),
and Shift means the alignment proceeds to the next input position
(i.e., {zj−1 = i − 1, zj = i}). Because there are only two ways
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for the alignment to reach zj = i, namely, Emit transition from
zj−1 = i or Shift transition from zj−1 = i − 1, the alignment
probability can be defined as 1

p(zj = i | zj−1,y1:j−1,x1:I) =
p(ai,j = Emit) zj−1 = i

p(ai−1,j = Shift) zj−1 = i− 1

0 zj−1 < i− 1 or zj−1 > i

(3)

The model can be optimized by minimizing the negative log
likelihood L(θ) = − log p(y1:J | x1:I ;θ). During prediction,
output acoustic features are predicted given input xzj at alignment
zj . The mean of the Gaussian distribution is used as the predicted
output acoustic feature. The alignment is incremented at each time
step as zj = zj−1 + k, where k = 0 if azj−1,j = Emit and
k = 1 if azj−1,j = Shift. How to determine k is the focus of this
research. In previous work, k was derived with greedy search [10] or
randomly sampled from a Bernoulli distribution [8]. We generalize
the sampling method of hard alignment in the next section.

3. SAMPLING METHODS OF HARD ALIGNMENT

3.1. Alignment sampling from a discrete distribution

Because SSNT-TTS is based on hard alignment, it not only predicts
the probability values of alignment but also determines the best
discrete alignment path during inference. This is quite different from
soft attention, which predicts only probability values and uses them
as the alignment to do a weighted sum over the encoder’s output.
For the determination of the best discrete alignment path, SSNT-TTS
samples alignment transition variable ai,j ∈ {Emit, Shift} from a
learned probability distribution at each time step.

A well-known method to sample a random variable from a
discrete distribution is the Gumbel-Max trick [11]. The algorithm
of the Gumbel-Max trick consists of two steps: one, sampling a
continuous random variable from a learned distribution, and two,
performing the argmax operation to output a final symbol. Let us
denote the density of the binary transition variables as p(ai,j =
Emit) = α1 and p(ai,j = Shift) = α2, where α1 + α2 = 1.
To randomly sample a discrete alignment transition variable at input
i and time step j with the Gumbel-Max trick, Gumbel noise is first
added to each logit of the alignment transition densities, which can
be written as

P(ai,j = Emit) = P(G1 + logα1 > G2 + logα2) (4)
= P(L+ logα1 > logα2), (5)

where G1 and G2 are the Gumbel noises and L = G1 −G2. Since
the differenceL is known to follow a Logistic distribution, a Logistic
noise can be sampled by L = log(U) − log(1 − U), where U is a
sample from the standard Uniform distribution. Finally, the argmax
operation is applied to obtain a discrete sample of the alignment
transition variable

ai,j = argmax(L+ logα1, logα2). (6)

This is a typical approach to draw random samples from
the Bernoulli distribution, and we refer to this condition as
Logistic condition” because it involves sampling from the Logistic

1We simplified the alignment probability used in our previous work [8]
in which we defined p(zj = i | zj−1,y1:j−1,x1:I) = p(ai−1,j =
Shift)p(ai,j = Emit) if zj−1 = i− 1.

distribution in continuous space. We will introduce another
continuous distribution for alignment transition distribution in
Section 3.3.

In implementation, because α1 + α2 = 1, we parameterize
them as α1 = sigmoid(logα, λ) and α2 = 1− sigmoid(logα, λ),
where sigmoid(x, λ) = 1

1+exp(−x/λ) and λ is a temperature hyper-
parameter to control the shape of the sigmoid function (see Figure 1).
Accordingly, SSNT only needs to predict a single value of α at each
time step. It can be shown that α = α1/α2.

3.2. Stochastic alignment search

Since SSNT-TTS treats the alignment as a latent variable, it must
decode a single alignment path from all possible alignments during
inference. From here on we refer to the process of selecting the best
alignment as search.

Greedy search is a search method that chooses a single path with
a higher alignment transition probability at each time step, as

ai,j = argmax(logα1, logα2) =

{
Emit if α1 > α2

Shift if α1 < α2

. (7)

From equations (6) and (7), we can see that the difference
between the greedy search and random sampling from a Bernoulli
distribution is just the Logistic noise L. For this reason, we refer to
random sampling from a Bernoulli distribution as stochastic greedy
search for convenience.

A generalized version of greedy search is the beam search
method. The beam search method considers several candidates of
alignments at each time step of decoding and selects the overall
best candidate alignment path. The number of candidates is called
beam width. Greedy search is a special case of beam search with
beam width equal to one. Furthermore, by combining the sampling
from the Bernoulli distribution and beam search, or more concretely,
by adding the Logistic noise to the argmax operations during beam
search, stochastic beam search can be easily implemented.

3.3. Continuous relaxation of discrete alignment variables

As we see in equation (5), the conventional random sampling from
the Bernoulli distribution uses the Logistic distribution. The use of
the Logistic distribution is, however, an oversimplified assumption
since it has a symmetric shape and a single mode. More specifically,
under this condition, similarity between the sample distribution and
the actual discrete distribution mainly depends on the prediction
accuracy of the α1 parameter.

To model the hard alignment more appropriately, we propose
using the binary Concrete distribution [12] for the alignment
transition probability. The Concrete distribution, which is also
known as the Gumbel-Softmax distribution [13], is a continuous
distribution that relaxes the discrete argmax operation. In this paper,
we focus on the binary case of the Concrete distribution because our
alignment transition variable ai,j has two states only.

Using a concept similar to the Gumbel-Max trick, we can
achieve random sampling from the binary Concrete distribution.
Like the procedure described in Section 3.1, random sampling from
the binary Concrete distribution starts with adding the Logistic noise
L to a logit of the density of the alignment transition variable. Here,
we introduce parameter α = α1/α2, and consider the logit of the α
instead. First, we add the Logistic noise L to a sigmoid function:

P(ai,j = Emit) =
1

1 + exp (−(logα+ L)/λ)
(8)
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Fig. 1: Left: Sigmoid function. Right: Binary Concrete distribution.
Points on sigmoid function indicate α parameters for binary
Concrete distribution.

where λ is a temperature parameter. This sigmoid function is used
as a continuous version of the argmax function and a discrete sample
can be obtained by applying the argmax operator to the output of the
sigmoid function. The resulting distribution has the following form:

BinConcrete(x|α, λ) = λαx−λ−1(1− x)−λ−1

(αx−λ + (1− x)−λ)2
. (9)

Figure 1 shows the binary Concrete distribution with α and λ of
various values. The parameter α can be learned by using the Logit
noise during training. We refer to the condition using the binary
Concrete distribution as the binary Concrete condition”.

Figure 2 summarizes the sampling process of the Logistic and
binary Concrete conditions implemented with neural networks. We
can see that the both conditions have a similar network structure,
and the difference is the location to add Logistic noise: the Logistic
condition has the Logistic noise after the sigmoid function, while the
binary Concrete condition has the Logistic noise before the sigmoid
function. Note that the use of Logistic noise is mandatory during
training for the binary Concrete condition, as the randomness makes
a model to learn the parameter α of the binary Concrete condition.
In contrast, the Logistic condition does not use Logistic noise during
training, since during training a model computes likelihood, not
samples. At inference time, the use of the Logistic noise can be
optional in both conditions. If the Logistic noise is omitted during
inference, it is equivalent to deterministic search using mean value
α1 for both the Logistic and binary Concrete conditions.

4. EXPERIMENTS

4.1. Experimental conditions

We performed an experiment to compare the Logistic and binary
Concrete conditions for SSNT-TTS. For each condition, we trained
multiple SSNT-TTS models with different values of the hyper-
parameter λ, which can be 1.0, 0.2, or 0.05. The effect of λ on
the Logistic and binary Concrete distributions is shown in Figure 1.

Given a trained SSNT-TTS model, we further compared
combinations of different alignment search methods during
inference. First, we compared the greedy and beam search methods.
In the case of beam search, we used a beam width equal to 10. For
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Fig. 2: Sampling process of discrete alignment transition variable.
Left: Logistic condition. Right: Binary Concrete condition. Bold
boxes are functions, and normal boxes are values. Round boxes are
continuous, and square boxes are discrete functions/values. Blue
boxes are random noise, and red boxes are parameters of probability
distribution.

both greedy and beam search, we further compared deterministic
and stochastic ways to determine the alignment transition action
ai,j at each time step. The deterministic way means absence of
the Logistic noise while the stochastic way uses the Logistic noise
during inference.

We used the ATR Ximera dataset [14], a Japanese speech corpus
containing 28,959 utterances totaling around 46.9 hours from a
professional female speaker. We used manually annotated phoneme
and accentual type labels [15]. The phoneme labels consist of 58
classes, including silences, pauses, and short pauses. All sentences
start and end with a silence symbol. To train our proposed systems,
we trimmed the beginning and ending silence from the utterances,
after which the duration of the corpus was 33.5 hours. Fixed length
silences were prepended and appended to target mel spectrograms.
The frame size and shift used for the mel spectrogram were 5 ms and
12.5 ms, respectively. We used 27,999 utterances for training, 480
for validation, and 480 for testing.

We used the same SSNT-TTS implementation as [8], except for
the configuration of network parameters. Figure 3 shows the network
architecture of SSNT-TTS. Phoneme embedding vectors had 512
dimensions, and the accentual type embedding had 64 dimensions.
For the encoder, we used the same conditions as [4]. For the decoder,
we used two pre-net [1] layers with 256 and 128 dimensions, a single
LSTM layer with 512 dimensions, and a single fully connected layer
for context projection with 512 dimensions. We applied zoneout
regularization [16] to all LSTM layers with probability 0.1, as in
[4]. We used the Adam optimizer [17] and trained the models
with a batch size of 100 and a reduction factor equal to 2 [1].
To reduce training time, we used mixed-precision training during
which the computation was mainly done in half precision, but the
model parameters were kept in normal precision. Furthermore, to
prepare models in various conditions, we first created a seed model
in the Logistic condition with temperature 0.05 running up to 270 K
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Fig. 3: Network architecture of SSNT-TTS.

steps. Second, we derived models with temperature 1.0 and 0.2 by
fine-tuning the seed model by 100 K steps. Finally, models with
the BinConcrete condition were further trained by fine-tuning the
models with the Logistic noise by 100 K steps. We used µ-law
WaveNet for the waveform generation [18]2.

4.2. Subjective evaluation

We organized a listening test to evaluate the proposed methods and
recruited 193 native Japanese listeners by crowdsourcing. Listeners
were presented with 40 samples from 20 systems and asked to
judge the naturalness of speech using a five-point MOS score. The
20 systems included natural and analysis-by-synthesis samples in
addition to the 18 SSNT-TTS models with different training and
inference configurations, which are summarized at the bottom of
Figure 4. One listener could evaluate at least three and at most ten
sets. Each sample was evaluated three times, and we obtained 28,800
evaluations in total. We checked the statistical significance of MOS
scores with a pairwise t-test.

Figure 4 shows the results of the listening test. If we compare
sampling conditions such as randomness and search method with the
same temperature parameter λ, we see a few interesting findings.

First, deterministic search conditions always outperformed
stochastic search conditions.

Second, the effect of the search methods on the MOS scores
depended on randomness, whether using deterministic search or
stochastic search. Under the deterministic condition, systems
with beam search always performed better than those with greedy
search. On the other hand, under the stochastic and Logistic
conditions, beam search performed worse than greedy search. For
the BinConcrete condition, neither of the two search methods
showed much difference.

If we focus on probability distribution variations while
fixing temperature, we see that their scores depended on the
use of randomness as well. With deterministic search, the
Logistic conditions had slightly higher scores than the BinConcrete
conditions, but their difference is not statistically significant. In
contrast, stochastic search in the Logistic condition performed much
worse than in the BinConcrete condition. The poor performance
of stochastic search in the Logistic condition was mitigated by
decreasing the temperature parameter.

Because the Logistic and BinConcrete conditions had similar
scores under deterministic search, we can infer that both conditions
were capable of estimating the alignment transition boundary.

2Audio samples can be found at our web page
https://nii-yamagishilab.github.io/sample-ssnt-sampling-methods
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Fig. 4: Results of listening test. Red circles indicate mean values.
Bars show maximum, median, and minimum. NAT is natural
sample, and ABS is analysis-by-synthesis.

However, we also see that the Logistic condition does not
parameterize a proper alignment transition distribution because
it performed very badly under stochastic search, especially in
stochastic beam search. Meanwhile, the BinConcrete conditions
were relatively robust to stochastic search condition, presumably
because it can fill the gap between continuous and discrete
distributions.

5. CONCLUSION

This paper investigated various combinations of sampling methods
and probability distribution forms for hard-alignment transition
modeling in SSNT-TTS. We have provided a more general view
to clarify common sampling methods such as greedy search, beam
search, and random sampling from a Bernoulli distribution by a
combination of randomness and search methods. In addition to
sampling methods, we introduced the binary Concrete distribution
to improve discrete alignment transition modeling by relaxing the
argmax operation. Therefore, we enabled arbitrary combinations
of probability distribution function, temperature parameter for
probability distribution, the use of randomness for sampling, and
search methods. We assessed the impact of various combinations of
these parameters on the naturalness of synthetic speech in a listening
test. Results showed that deterministic search was more favorable
than stochastic search, and beam search improved naturalness. The
binary Concrete distribution was relatively robust under stochastic
search. In contrast, the Logistic distribution was not suitable for
stochastic search.

Future work includes predicting the temperature λ in a
phoneme-dependent manner instead of fixing it as a hyper-
parameter. Moreover, we are endeavoring to improve SSNT-TTS in
general. The naturalness of our best SSNT-TTS system has a MOS
score around 3, which means acceptable quality. It is still inferior to
the current standard soft-attention-based TTS methods.
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S. Narang, J. Raiman, and J. Miller, “Deep Voice 3: Scaling
text-to-speech with convolutional sequence learning,” in Proc.
ICLR, 2018.

[4] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Ryan, R. A. Saurous,
Y. Agiomyrgiannakis, and Y. Wu, “Natural TTS synthesis
by conditioning WaveNet on Mel spectrogram predictions,”
in Proc. ICASSP, 2018, pp. 4779–4783. [Online]. Available:
https://doi.org/10.1109/ICASSP.2018.8461368

[5] N. Li, S. Liu, Y. Liu, S. Zhao, M. Liu, and
M. Zhou, “Close to human quality TTS with transformer,”
CoRR, vol. abs/1809.08895, 2018. [Online]. Available:
http://arxiv.org/abs/1809.08895

[6] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao,
and T. Liu, “Fastspeech: Fast, robust and controllable text
to speech,” CoRR, vol. abs/1905.09263, 2019. [Online].
Available: http://arxiv.org/abs/1905.09263

[7] M. He, Y. Deng, and L. He, “Robust sequence-to-
sequence acoustic modeling with stepwise monotonic
attention for neural TTS,” in Proc. Interspeech 2019,
2019, pp. 1293–1297. [Online]. Available: http:
//dx.doi.org/10.21437/Interspeech.2019-1972

[8] Y. Yasuda, X. Wang, and J. Yamagishi, “Initial investigation
of encoder-decoder end-to-end TTS framework using
marginalization of monotonic hard alignments,” in Proc.
10th ISCA Speech Synthesis Workshop, 2019, pp. 211–216.
[Online]. Available: http://dx.doi.org/10.21437/SSW.2019-38

[9] L. Yu, J. Buys, and P. Blunsom, “Online segment to segment
neural transduction,” in Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, 2016,
pp. 1307–1316.

[10] S. Kato, Y. Yasuda, X. Wang, E. Cooper, S. Takaki, and
J. Yamagishi, “Rakugo speech synthesis using segment-to-
segment neural transduction and style tokens toward speech
synthesis for entertaining audiences,” in Proc. 10th ISCA
Speech Synthesis Workshop, 2019, pp. 111–116. [Online].
Available: http://dx.doi.org/10.21437/SSW.2019-20

[11] J. I. Yellott, “The relationship between luce’s choice
axiom, thurstone’s theory of comparative judgment, and the
double exponential distribution,” Journal of Mathematical
Psychology, vol. 15, no. 2, pp. 109 – 144, 1977. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
0022249677900268

[12] C. J. Maddison, A. Mnih, and Y. W. Teh, “The
concrete distribution: A continuous relaxation of
discrete random variables,” in Proc. ICLR (conference
track). OpenReview.net, 2017. [Online]. Available:
https://openreview.net/forum?id=S1jE5L5gl

[13] E. Jang, S. Gu, and B. Poole, “Categorical
reparameterization with gumbel-softmax,” in Proc ICLR
(conference track). OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=rkE3y85ee

[14] H. Kawai, T. Toda, J. Yamagishi, T. Hirai, J. Ni, N. Nishizawa,
M. Tsuzaki, and K. Tokuda, “Ximera: A concatenative speech
synthesis system with large scale corpora,” IEICE Transactions
on Information and System (Japanese Edition), pp. 2688–2698,
2006.

[15] H.-T. Luong, X. Wang, J. Yamagishi, and N. Nishizawa,
“Investigating accuracy of pitch-accent annotations in neural-
network-based speech synthesis and denoising effects,” in
Proc. Interspeech, 2018, pp. 37–41.

[16] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas,
N. R. Ke, A. Goyal, Y. Bengio, A. Courville, and C. Pal,
“Zoneout: Regularizing rnns by randomly preserving hidden
activations,” in Proc. ICLR, 2017.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. ICLR, 2014.

[18] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” CoRR, vol. abs/1609.03499, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03499

https://doi.org/10.1109/ICASSP.2018.8461368
http://arxiv.org/abs/1809.08895
http://arxiv.org/abs/1905.09263
http://dx.doi.org/10.21437/Interspeech.2019-1972
http://dx.doi.org/10.21437/Interspeech.2019-1972
http://dx.doi.org/10.21437/SSW.2019-38
http://dx.doi.org/10.21437/SSW.2019-20
http://www.sciencedirect.com/science/article/pii/0022249677900268
http://www.sciencedirect.com/science/article/pii/0022249677900268
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=rkE3y85ee
http://arxiv.org/abs/1609.03499

	1  Introduction
	2  Background of SSNT-TTS
	3  Sampling methods of hard alignment
	3.1  Alignment sampling from a discrete distribution
	3.2  Stochastic alignment search
	3.3  Continuous relaxation of discrete alignment variables

	4  Experiments
	4.1  Experimental conditions
	4.2  Subjective evaluation

	5  Conclusion
	6  References

