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ABSTRACT
We propose a simple but efficient method termed Guided
Learning for weakly-labeled semi-supervised sound event
detection (SED). There are two sub-targets implied in weakly-
labeled SED: audio tagging and boundary detection. Instead
of designing a single model by considering a trade-off be-
tween the two sub-targets, we design a teacher model aiming
at audio tagging to guide a student model aiming at boundary
detection to learn using the unlabeled data. The guidance
is guaranteed by the audio tagging performance gap of the
two models. In the meantime, the student model liberated
from the trade-off is able to provide more excellent boundary
detection results. We propose a principle to design such two
models based on the relation between the temporal compres-
sion scale and the two sub-targets. We also propose an end-
to-end semi-supervised learning process for these two models
to enable their abilities to rise alternately. Experiments on the
DCASE2018 Task4 dataset show that our approach achieves
competitive performance.

Index Terms— Sound event detection, weakly-labeled,
semi-supervised learning, neural networks

1. INTRODUCTION

Sound event detection (SED) consists in recognizing the pres-
ence of sound events in segments of audio and detecting their
onsets as well as offsets. Traditional approaches of SED re-
quires a large amount of training data with detailed annota-
tions [1, 2, 3]. Due to the high cost of large-scale detailed an-
notations, weakly-labeled semi-supervised SED, which em-
ploys a small number of weak annotations that only indicates
the presence of the event classes together with a large amount
of unlabeled data, has become a new focus in the research
on SED [4, 5, 6]. Especially, DCASE2018 Task 4 [7] and
DCASE2019 Task 4 [8] have launched challenges on weakly-
labeled semi-supervised SED in domestic environments.

There are two sub-targets implied in weakly-labeled SED:
audio tagging to determine the occurrences of the event
classes and boundary detection to determine the timestamps

of all the occurring events. Due to the excellent performance
of deep neural networks, most recent weakly-labeled SED
systems are based on deep neural networks such as CNN
[9, 10, 11, 12] and CRNN [13]. However, as discussed in
[14], when designing deep neural networks, there is always
a trade-off between the two sub-targets: larger compression
scale of the high-level feature map of neural networks tends
to achieve more accurate classification performance (audio
tagging) but leads to less detail information (for boundary
detection). Therefore, previous studies on weakly-labeled
semi-supervised SED apply general semi-supervised meth-
ods such as Mean Teacher [15, 13] and Triplet loss [16] to a
well-designed model. The model with a moderate temporal
compression scale seeks a trade-off between the two sub-
targets and these semi-supervised methods focus on optimiz-
ing the direct training target (audio tagging) using unlabeled
data. However, the trade-off implied in the model architec-
ture still limits the boundary detection capability of the SED
system.

In this paper, we propose a teacher-student framework
named Guided Learning for weakly-labeled semi-supervised
SED. Unlike Mean Teacher [15], where the teacher model
is the temporal weighted average of the student model so
that the two models are homologous, the proposed method
uses two different models pursuing the two sub-targets re-
spectively. The two models are trained synchronously and
forced to learn from the unlabeled data with tags generated
by each other. In this way, the performance gap on audio tag-
ging between the two models enables the teacher model to
guide the student model to learn using unlabeled data. When
the student model performs well enough on audio tagging, it
can in turn help to fine-tune the teacher model. Therefore, the
abilities of these two models rise alternately during the train-
ing. This separation of the sub-targets has two advantages:
1) the student model is liberated from the trade-off required
for a well-designed model in other semi-supervised learning
methods and expected to achieve better boundary detection
performance; 2) it provides a direct way of reusing the STOA
models of the two sub-targets, which means that new tech-
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Fig. 1. The general design of the neural network. 3 grids on
the left represent intermediate feature maps. Several pooling
layers lead to the temporal compression. When the classifi-
cation probabilities are restored to the original size for frame-
level prediction, most of the detailed information lost.

niques of audio tagging can be used without or with little
concern of boundary detection, and vice versa. Experimen-
tal results on the DCASE2018 Task 4 dataset show that our
approach achieves competitive performance.

2. GUIDED LEARNING

2.1. The design principle of a more professional teacher
model and a more promising student model

In this section, we describe in detail the trade-off mentioned in
Section 1, introduce why and how we design the two models.

Assuming that x is the input feature of the neural network
and to simplify the description, we formulate the problem as
a binary detection problem of each single event category. Let
f(x) denotes the clip-level predicted probability output by the
neural network for input x from an audio clip, then the clip-
level prediction is:

φ(f(x)) =

{
1, f(x) ≥ α
0, otherwise

(1)

Similarly, assuming that f
′

t (x) denotes the tth-frame pre-
dicted probability, the frame-level prediction at time t is:

ϕ(f
′

t (x)) =

{
1, f

′

t (x) · φ(f(x)) ≥ β
0, otherwise

(2)

Without loss of generality, we take thresholds α = β =
0.5. According to Equation 2, ϕ(f

′

t (x)) depends on two sub-
targets: φ(f(x)) (audio tagging) and f

′

t (x) (boundary detec-
tion). As shown in Figure 1, dense output loses recognition
ability at a fine scale compared to the original scale. How-
ever, since dense output implies that the receptive field of the
high-level feature map of the neural network is large enough
to integrate contextual information, it tends to achieve bet-
ter clip-level prediction. Therefore, when designing a neural
network aiming at frame-level prediction, traditional methods
choose a moderate temporal compression scale, which seeks
a trade-off between audio tagging and boundary detection.

Instead of seeking this trade-off, we design a promising
student model (PS-model) with a relatively small temporal

Algorithm 1 Guided learning pseudocode.

Require: xk = kth training input sample
Require: L = set of weakly-labeled training inputs
Require: U = set of unlabeled training inputs
Require: yk = label of xk
Require: Sθ (x) = the neural network of the PS-model
Require: Tθ′ (x) = the neural network of the PT-model
Require: J (t, z) = loss function
Require: φ(z) = prediction generation function
Ensure: θ, θ

′

for i = 1→ num epoches do
if i > start epoch then
a← 1− γi−start epoch . the weight of L

′
unsupervised

else
a← 0

end if
for each minibatch ß do
LlPS ← 1

|ß|

[∑
xk∈L∩ß J (yk, Sθ(xk))

]
LlPT ← 1

|ß|

[∑
xk∈L∩ß J

(
yk, Tθ′ (xk)

)]
Lunsupervised ← 1

|ß|

[∑
xk∈U∩ß J

(
φ((Tθ′ (xk)), Sθ(xk)

)]
L

′
unsupervised ← 1

|ß|

[∑
xk∈U∩ß J

(
φ(Sθ(xk)), Tθ′ (xk)

)]
loss = LlPS +LlPT +Lunsupervised +a ·L

′
unsupervised

update θ, θ
′

. update network parameters
end for

end for

compression scale (even no compression), which is promis-
ing to achieve better boundary detection performance. Since
we expect to design another model better at the direct train-
ing target to guide it to learn using unlabeled data, we design
a professional teacher model (PT-model) with a larger time
compression scale, which is more professional at audio tag-
ging.

2.2. The learning process

In this section, we introduce the end-to-end learning process
we proposed, in which the PT-model guides the PS-model to
learn, as shown in Algorithm 1.

Assuming that Sθ(x) and Tθ′ (x) are the clip-level pre-
dicted probabilities of the PS-model (with trainable param-
eters θ) and the PT-model (with trainable parameters θ

′
) re-

spectively, and y is the groundtruth of input x. Then we force
the PS-model to learn from unlabeled data with the tags that
the PT-model predicts. Since the PT-model is explicitly su-
perior to the PS-model, the audio tagging performance of the
PS-model can be improved with the following loss:

Lunsupervised = J(φ(Tθ′ (x)), Sθ(x)) (3)

where φ(Tθ′ (x)) denotes the clip-level prediction of the PT-
model. Here, we take Cross Entropy as the loss function J .

To guarantee the basic ability of the PT-model, we utilize



weakly-labeled data to update its weights with a supervised
loss. To prevent the PS-model from learning too many noisy
tags generated by the PT-model in the early stage and drifting
away, we employ a supervised loss to update the PS-model.
Then the combination of these two supervised losses is:

Lsupervised = J(y, Tθ′ (x)) + J(y, Sθ(x)) (4)

We argue that as the training progresses, the capability of
the PS-model on clip-level prediction gradually approaches
the PT-model. Therefore, we can utilize unlabeled data with
the tags from the PS-model to fine-tune the PT-model, which
encourages the output probabilities of the PT-model to be in-
sensitive to variations in the directions of the low-dimensional
manifold just like the fine-tuning phase in Pseudo-Label [17].
Then the unsupervised loss is:

L
′

unsupervised = J(φ(Sθ(x)), Tθ′ (x)) (5)

where φ(Sθ(x)) denotes the clip-level prediction of the PS-
model. Therefore, the whole training process is as follows:

At the beginning of the training, the PT-model simply up-
dates with the supervised loss due to the poor performance of
the PS-model. The fact that the superiority of the PT-model
is guaranteed by the design of model architecture enables the
PS-model to keep an unsupervised loss all the time. There-
fore, in the first s epochs, the loss we employ is:

Lfirst = Lsupervised + Lunsupervised (6)

After s epochs, the PT-model is considered to be a little
stable and it begins to keep another loss to fine-tune itself. In
this phase, the loss we employ is:

Lsecond = Lfirst + a · L
′

unsupervised (7)

Here, the increasing factor a is expected to be relatively
small and increase slowly during training. If a is too large, the
PT-model will be effected by too-much noisy tags generated
by the PS-model and drift away. Therefore, we take a =
1−γe−s in our experiments, where e is the current epoch and
γ is a hyperparameter between 0.99 and 0.999.

3. EXPERIMENTS

3.1. Data set

The dataset we utilize is from the DCASE 2018 Task 4 [7],
which is divided into 5 subsets: weakly-labeled training set
(1578 clips), unlabeled in domain training set (14412 clips),
unlabeled out of domain training set (39999 clips), strongly-
labeled validation set (288 clips) and strongly-labeled test set
(880 clips). We take the combination of the weakly-labeled
and unlabeled in domain training set as our training set.

3.2. Model architecture

As shown in Figure 2, the architecture of the PT-model com-
prises several components: a batch normalization input layer,
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Fig. 2. The model architectures.

4 CNN modules, a CNN block, an attention pooling module
and a dense layer. Each CNN block comprises a convolu-
tional layer, a batch normalization layer and a ReLU activa-
tion layer. Each CNN module comprises a CNN block, a Max
pooling layer and a dropout layer. The architecture of the PS-
model comprises a batch normalization input layer, 3 CNN
modules, an attention pooling module and a dense layer. The
CNN modules in PS-model does not comprise any dropout
layer. There is no temporal compression in the PS-model.
The total number of trainable parameters of the PT-model is
332364 and that of the PS-model is 877380. The input aug-
mentation is implemented by Gaussian noise (δ = 0.15) on
the input layer of the PT-model. We employ 64 log mel-bank
magnitudes which are extracted from 40 ms frames with 50%
overlap, thus each 10-second audio clip is transformed into
500 frames. During post-processing, a group of median fil-
ters with adaptive window size is utilized for smoothing the
prediction.

3.3. Training and evaluation

The models are trained with a mini-batch of 64 clips for 100
epochs. All the experiments are repeated 30 times. The av-
erage performances and the best performances within these
30 experiments are reported. All the models are evaluated
using the sed eval package to compute event-based measure
with a 200ms collar on onsets and a 200ms / 20% of the
events length collar on offsets. We report clip-level macro
F1 score [18] to measure the performance of models on au-
dio tagging. We release our code at https://github.com/Kikyo-
16/Sound event detection.



Table 1. The average performances of models

Model Audio tagging Event-based F1

The 1st place - -
Mean Teacher 0.609± 0.003 0.300± 0.004
Weakly-labeled-only
PS-model 0.582± 0.004 0.247± 0.004
PT-model 0.611± 0.003 0.112± 0.002
GL-1 0.637± 0.004 0.340± 0.005
GL-0.999 0.652± 0.004 0.360± 0.007
GL-0.998 0.648± 0.005 0.360± 0.008
GL-0.997 0.641± 0.003 0.363± 0.005
GL-0.999* 0.611± 0.003 0.335± 0.005

3.4. Results

We set start epoch s = 5. As shown in Table 1, GL-0.997
(Guided Learning with γ = 0.997) achieves the best aver-
age performance with an event-based F1 score of 0.363. As
shown in Table 2, GL-0.999 achieves an event-based F1 score
of 39.5% (the best result within these 30 experiments), out-
performing the first place [13] in the challenge by 7.1 per-
centage points. The first place in the challenge employs Mean
Teacher [15] with a well-designed CRNN model and achieves
an event-based F1 score of 32.4%, which is to our knowledge
the SOTA performance on the dataset so far.

Extra baseline We also combine Mean Teacher [15] with
our weakly-labeled SED system to be another baseline. Since
Mean teacher requires two models with the same model ar-
chitecture, we employ the architecture of the PS-model de-
scribed in Figure 2 as their architecture. As shown in Table 1
and 2, GL outperforms Mean Teacher both on audio tagging
and event-based F1 score on the dataset.

Weakly-labeled learning The weakly-labeled-only PT-
model achieves an average macro F1 score of 0.611 on audio
tagging and outperforms the PS-model, which exactly meets
our expectation. This is because the temporal size of the fea-
ture map of the PT-model is compressed by several pooling
layers step by step. Finally, the receptive field of the high-
level feature map is large which makes it easy to integrate the
contextual information. On the contrary, the receptive field of
every-frame high-level feature representation of the PS-model
is only 2.2% (11/500) of its original temporal scale. The
gap between the capability of the two models to integrate the
contextual information explains why the PT-model achieves
better audio tagging performance. On the other hand, the PS-
model achieves an average event-based F1 score of 0.238 on
SED, outperforming the PT-model by 13.4 percentage. Ob-
viously, the PT-model lost the ability to see finer information
due to its temporal scale compression.

The effect of GL All the GL models outperform weakly-
labeled-only PT-model and PS-model both on audio tagging
and event-based F1 score. When γ = 1, the weight of

Table 2. The performances with the best event-basedF1 score

Model Audio tagging Event-based F1

The 1st place - 0.324
Mean Teacher 0.625 0.324
Weakly-labeled-only
PS-model 0.600 0.267
PT-model 0.627 0.124
GL-1 0.653 0.371
GL-0.999 0.673 0.395
GL-0.998 0.671 0.392
GL-0.997 0.657 0.388
GL-0.999* 0.632 0.367

L
′

unsupervised is always 0 and the PT-model does not learn
from the unlabeled data. Then the fact that GL-1 outperforms
weakly-labeled-only PT-model on audio tagging indicates
that the unlabeled data does not only help the PS-model to
catch up with the PT-model on audio tagging but also helps
it to exceed the original PT model without GL. When γ de-
creases to 0.999, the PS-model in GL-0.999 achieves the
best performance on audio tagging, which denotes that the
PT-model in GL-0.999 is fine-turned by L

′

unsupervised. How-
ever, when γ decreases to 0.998, the weight of L

′

unsupervised

increases more rapidly and the audio tagging performance of
the PS-model in GL-0.998 starts to decline. To highlight the
effect of the PT-model in GL, we make the PT-model share
the same architecture of the PS-model in GL-0.999 and show
the results as GL-0.999* in the tables. Comparing the per-
formance of GL-0.999 and GL-0.999* in Table 1, GL-0.999
performs better. Since there is no performance gap on audio
tagging between the two models in GL-0.999*, the result
shows that the better ability on audio tagging of the PT-model
does contribute to the better performance of GL. In addition,
the trainable parameters of the PT-model are always much
fewer than that of the PS-model, which greatly improves the
training efficiency.

4. CONCLUSIONS

We investigate the two sub-targets implied in weakly-labeled
SED and relate them to the design of model architecture,
based on which we proposed a semi-supervised learning
method named Guided Learning to optimize weakly-labeled
SED system using unlabeled data. In addition, some other
existing researches simply focus on audio tagging and the
proposed approach provides a direct way to reuse those SOTA
model to a weakly-labeled SED system.
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