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ABSTRACT

Federated learning (FL) is a machine learning model that pre-

serves data privacy in the training process. Specifically, FL

brings the model directly to the user equipments (UEs) for

local training, where an edge server periodically collects the

trained parameters to produce an improved model and sends

it back to the UEs. However, since communication usually

occurs through a limited spectrum, only a portion of the UEs

can update their parameters upon each global aggregation. As

such, new scheduling algorithms have to be engineered to fa-

cilitate the full implementation of FL. In this paper, based

on a metric termed the age of update (AoU), we propose a

scheduling policy by jointly accounting for the staleness of

the received parameters and the instantaneous channel qual-

ities to improve the running efficiency of FL. The proposed

algorithm has low complexity and its effectiveness is demon-

strated by Monte Carol simulations.

Index Terms— Federated learning, mobile edge comput-

ing, scheduling policy, age-of-update.

1. INTRODUCTION

Due to the sheer volume of data generated by the end-user

devices, as well as the increasing concerns about sharing pri-

vate information, a new machine learning model, namely the

federated learning (FL) [1–4], has emerged from the intersec-

tion of artificial intelligence and edge computing [5–7]. In

stark contrast to the conventional machine learning methods

that run in a data center, FL usually operates at the network

edge and brings the models directly to the devices for training,

where only the resultant parameters shall be sent to the edge

servers that reside in an access point (AP). This salient feature

of on-device training brings along great advantages of elimi-

nating the large communication overheads as well as preserv-

ing data privacy, and hence making FL particularly relevant

for mobile applications [6–10]. However, as the AP needs to

link a large number of user equipments (UEs) over a limited

spectrum, only a portion of the UEs can be selected to ac-

cess the radio channel and send their trained updates in each

global aggregation [5, 11]. To this end, the stragglers issue is

more crucial for FL than for conventional trainings run in data

centers [3, 4, 12].

Recognizing such criticality, a host of studies have been

carried out and resulted in various scheduling protocols for

FL, ranging from minimizing the transmission latency [13],

maximizing the spectral utility [14], to opportunistically al-

ternating between selecting the UEs with advantageous and

disadvantageous channel conditions [15]. Even though posi-

tive gains have been demonstrated, these works put the main

focus on exploiting the spectral resources so as to maximize

the number of updates collectible by the AP in each round of

global communication but ignore the staleness of these up-

dates. As pointed out by [16], the staleness of updates has a

significant impact on the convergence rate of distributed ma-

chine learning models such as FL. Therefore, it is reasonable

to expect a scheduling algorithm that accounts for both the

staleness and the communication quality can accelerate the

convergence of FL in a mobile edge network. On this pur-

pose, we introduce a metric, referred to as the age-of-update

(AoU)1, to measure the staleness associated with each update

and based on that, devise a scheduling protocol that allows

the AP to collect timely updates from the UEs for FL train-

ing. The algorithm is shown to possess low complexity, and

its effectiveness is amply illustrated via Monte Carlo simula-

tions.

2. SYSTEM MODEL

Let us consider a mobile edge network that consists of one

AP and K user equipments (UEs), as depicted in Fig. 1, all

are capable of performing local computing. For a generic UE

k, we consider that it is equipped with single antenna and

has local data set Dk = {xi ∈ R
d, yi ∈ R}nk

i=1 with size

nk = |Dk|, where | · | denotes the cardinality. In this net-

work, the UEs communicate with the AP through a common

spectrum, which is divided into N equal-length subchannels.

1Such age metric has been previously used, mainly, in the context of net-

working and has been shown to improve the notion of data freshness in var-

ious applications, see, e.g., the original treatment in [17], and the survey

in [18].

http://arxiv.org/abs/1910.14648v1


D1 UE1 D2 UE2 DK UEK

...

AP

Update Transmission:

Distribute Aggregation:

MEC

...

Fig. 1. An illustration of the employed network model.

Here, we assume N < K . The AP can possibly assign dif-

ferent UEs a different number of subchannels. We adopt a

block-fading propagation model, where the channels between

any pair of antennas are assumed independently and identi-

cally distributed (i.i.d.) and quasi-static, i.e., the channel is

constant during one transmission block, and varies indepen-

dently from block to block.

The goal of the AP is to learn a statistical model over data

that reside on the K associated UEs. Specifically, the AP

needs to fit a vectorw ∈ R
d so as to minimize a particular loss

function. Formally, such a task can be expressed as follows:

min
w∈Rd

{

P (w) =
1

n

n
∑

i=1

ℓ(w;xi, yi) + ξr(w)
}

(1)

where n =
∑K

i=1 ni is the size of the whole data set, ξ is the

regularizing parameter and r(w) a deterministic penalty func-

tion. The function ℓ(·) represents the loss function. Several

examples of loss functions used in popular machine learning

models are summarized in [19].

Due to concerns of data privacy, the raw data set is gen-

erally not available at the AP and hence (1) shall be solved

using FL. In particular, the training procedure (cf. Algo-

rithm 3) comprises three major steps: i) the UEs conduct

local computing aimed to solve (1) by referring to the data

resided on device and a downloaded global model, and send

the resultant parameters to the AP, ii) the AP aggregates the

received updates to produce an improved global model, and

iii) the new model is sent back to UEs, and the process is

repeated. After a sufficient amount of training and update ex-

changes, usually termed communication rounds, between the

AP and UEs, the objective function (1) can converge to the

global optimal. Nevertheless, because the wireless medium

is resource-constrained, the AP can only select a subgroup

of UEs for parameter updates in each communication round,

and the choice of selection can largely affect the convergence

rate of FL [19]. In that respect, it languishes a dire need for

appropriate scheduling algorithms.

time

Fig. 2. An example of the AoU evolution in time, where the

transmissions take place at time stamps t1, t2, and t3.

3. SCHEDULING POLICY DESIGN

In this section, we elaborate the concept of AoU, and detail

the development of a scheduling policy based on this quantity.

3.1. Design Metric

In order to quantify the staleness of each update, we leverage

the concept of information freshness [17] and define a metric

termed Age-of-Update (AoU). For a generic UE k, its AoU

evolves as follows:

Tk[t+ 1] = (Tk[t] + 1)(1− Sk[t]), Sk[t] ∈ {0, 1} (2)

where Tk[0] = 0, and Sk[t] takes value 1 if UE k is se-

lected by the AP for update during communication round t,
and takes value 0 otherwise. It is important to note that the

AoU of UE k measures the time elapsed since its latest update

is received by the AP, and hence a larger AoU value indicates

a higher degree of staleness associated with that UE.

As illustrated in Fig. 2, the evolution of AoU is affected

by the scheduling algorithm. Moreover, as the UEs are usu-

ally situated at various geographic locations, their AoU will

progress differently due to their distinct communication con-

ditions. In this regard, the different AoUs can be utilized as a

reference to prioritize the channel access for the UEs.

3.2. Problem Formulation

Using the notion of AoU, we devise our scheduling protocol

such that the AP is able to keep the collection of all the up-

dates “as fresh as possible” by minimizing the sum of cer-

tain functions of the AoUs in each communication round.

To be concrete, upon the global aggregation at round t, the

AP selects the set of UEs for parameter update, denoted by

S[t] = {S1[t], S2[t], ..., SK [t]}, according to the following

criteria:



min
S[t],P

K
∑

k=1

fα(Tk[t] )( 1 − Sk[t] ) (3a)

s.t.

(

∑

n∈Ck

1

2
log(1 +Gk,nPk,n)−Rs

)

Sk[t] ≥ 0 (3b)

∑

n∈Ck

Pk,n ≤ PTX (3c)

Sk[t] ∈ {0, 1}, ∀ k ∈ {1, ...,K} (3d)

Ci ∩ Cj=φ, if i 6= j and ∪K
k=1 Ck⊆{1, ..., N} (3e)

where Gk,n is the gain attainable by UE k on the n-th sub-

channel, Pk,n the correspondingly injected power, and Ck

is the set of subchannels assigned to UE k. Because the

transmission of updates need to be finished within a certain

time, the selected UEs should have their rates individually

exceeding a threshold Rs, representing a required quality-

of-service. Moreover, the UEs are subject to a maximum

transmit power through constraint (3c), while the constraint

(3e) stipulates that the UEs shall follow an orthogonal chan-

nel access methodology to avoid interfering with each other.

The function fα(·) in (3) represents the sensitivity of the edge

server to the staleness of local updates. In this paper, we set

the function as follows [20]:

fα(x) =

{

x1−α

1−α
, if α 6= 1,

log(1 + x), otherwise.
(4)

The essence of the above function is to ensure a fairness treat-

ment among the UEs based on their AoUs.

Two special cases are noteworthy: i) if fα(x) is set as a

constant, then solving problem (3) is equivalent to packing

the maximum number of UEs into the spectrum during each

communication round [14], and ii) when the communication

is conducted under an ideal environment, i.e., if Rs = 0, so-

lutions of the optimization problem (3) lead to an N -Round-

Robin policy [19]. Therefore, in the general scenario, the

design problem given by (3) balances the tradeoff between

fairness and quality on the radio channel access. It is also

worthwhile to note that the design per problem (3) is not only

suitable for scheduling updates in FL, but can also be lever-

aged in the scheduling of wireless traffic [21].

3.3. Algorithm

The problem given by (3) is a combinatorial problem with

mixed integers that does not possess low complexity solu-

tions in general. Here, we tackle the problem via a greedy

algorithm. The approach is constituted of two major steps.

First, amongst all the UEs, the AP needs to form a candi-

date list Is for further selection, by choosing those UEs that

are able to achieve the targeted rate Rs under the currently

Algorithm 1 Candidate UE List & Subchannel Allocation

Input: The set of currently available subchannels N̄ ⊆ N

Initialize: Is = φ and Ck = φ, ∀k ∈ {1, 2, ...,K}
for each UE k ∈ {1, 2, ...,K} do

set n∗

k = 1 and order the channel gains as Gk,τ(1) ≥
Gk,τ(2) ≥ ... ≥ Gk,τ(N̄) where τ(n) ∈ N̄

while n∗

k ≤ N̄ do

Compute the following power updates:

Pk,τ(n)=

{

P (n∗

k)
n∗

k

+ 1
Gk,n∗

k

− 1
Gk,τ(n)

, 1≤n≤n∗

k,

0, n∗

k<n≤N̄
(5)

in which P (n∗

k) is given by

P (n∗

k) =



PTX −

n∗

k−1
∑

n=1

(

1

Gk,n∗

k

−
1

Gk,τ(n)

)





+

(6)

where [·]+ = max(·, 0)

if
∑n∗

k

n=1 log(1 +Gk,τ(n)Pk,τ(n)) ≥ Rs then

Update Is = Is ∪ {k} and Ck = ∪
n∗

k

n=1{τ(n)}
Set n∗

k = N̄ + 1
else

Update n∗

k = n∗

k + 1

Output: Is, {Ck, k ∈ Is}

Algorithm 2 Age-Based Scheduling (ABS)

Input: Is, {Ck, k ∈ Is}, and T[t] = {Tk[t], k ∈ Is}
Initialize: Sk[t] = 0, k ∈ {1, 2, ...,K}
if Is 6= φ then

Assign Sk∗ [t] = 1, in which the index k∗ is chosen as

k∗ = argmaxk∈Is fα(Tk[t])/‖Ck‖0
Update the available subchannels as N̄ = N̄ \ Ck∗

Call Algorithm 1 with updated input N̄ and obtain the

new outputs Is, {Ck, k ∈ Is}
Call Algorithm 2 with updated inputs Is, {Ck, k ∈ Is}

Output: S[t] = {S1[t], S2[t], ..., SK [t]}

available spectrum budget. Moreover, each UE in the can-

didate list shall occupy the least amount of subchannels. As

such, a candidate UE k needs to satisfy the following:

min
Ck,Pk

‖Ck‖0 (7a)

s.t.
∑

n∈Ck

1

2
log(1 +Gk,nPk,n) ≥ Rs, (7b)

∑

n∈Ck

Pk,n ≤ PTX (7c)

where ‖ · ‖0 is the L-0 norm [22] and Pk = {Pk,n, n ∈ Ck}
is the transmit power on the allotted subchannels. For each

selectioin of Ck, subproblem (7) can be solved by a water-



Algorithm 3 Wireless Federated Learning

Parameters: τ = number of local steps per communication

round, η = step size for local learning

Initialize: The AP assigns Tk[0] = 0, ∀k ∈ {1, ...,K} and

randomly initializes w0 ∈ R
d

for t = 0, 1, 2, ..., T − 1 do

The AP runs ABS (Algorithm 2) to get S[t], and sends

the parameter wt to all the UEs in the updating list

for each UE with Sk[t] = 1 do

Initialize wt
k = w

t

for s = 1 to τ do

Sample i ∈ Dk uniformly at random, and up-

date the local parameter wt
k as follows:

w
t
k=w

t
k − η

(

∇ℓ(wt
k;xi, yi) + ξ∇r(wt

k)
)

(9)

The UE updates the parameter wt
k to the AP

The AP collects the trained weights {wt
k}k∈S[t], and

updates the AoUs T[t] and the global parameter wt+1 re-

spectively as follows:

T[t+ 1] = (T[t] + 1)⊙ (1− S[t]), (10)

w
t+1 =

∑

k∈S[t] |Dk|w
t
k

∑

k∈S[t] |Dk|
(11)

where 1 ∈ R
K is the all-one vector and ⊙ represents the

Hadamard product

Output: wT

filling algorithm, and the details of forming the candidate list

is summarized in Algorithm 1.

Next, from the set of candidate UEs, the AP shall select

the UEs that have relatively large AoU while requiring a rel-

atively small amount of subchannels for the transmissions.

Formally, the AP will select UE i instead of UE j if the fol-

lowing holds:

fα(Ti[t])/‖Ci‖0 > fα(Tj [t])/‖Cj‖0. (8)

The above criteria brings us to the age-based scheduling

(ABS) policy, summarized in Algorithm 2. Note that the

ABS adopts a recursive search for UEs, since the occupation

of a particular subchannel can incur other UEs in the candi-

date list to violate their rate constraint and hence get removed.

Therefore, the candidate list Is needs to be recalculated via

Algorithm 1 whenever a UE is selected. Nevertheless, as the

UE selection and subchannel assignments are conducted in a

greedy manner, the algorithm has relatively low complexity.

Finally, we present the FL approach to solving (1) in the

setting of a mobile edge network, as per Algorithm 3.
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Fig. 3. Impact of scheduling policies on the convergence of

FL in terms accuracy value.

4. NUMERICAL RESULTS

In this section, we carry out simulations to verify the effec-

tiveness of the proposed scheduling policy. Particularly, we

evaluate the efficiency of training FL on a support vector ma-

chine (SVM) over the MNIST data set, which consists of

handwritten numerals, under the proposed ABS policy, and

a state-of-the-art approach [14], coined as the MaxPack pol-

icy. The whole data set is participated in 100 non-overlapped

portions and assigned to the K = 100 UEs that are randomly

scattered within a disc of a radius 100 m, where the AP locates

at the center. There are in totalN = 20 available subchannels,

and the transmission on any subchannel is subject to Rayleigh

fading with unit mean and the path loss that follows a power

law, with the exponent being β = 3.5.

Fig. 3 plots the test accuracy as a function of the com-

munication rounds. From this figure, we can observe that

FL running under the ABS policy is able to attain a marked

improvement in the accuracy value compared to the Max-

Pack policy. Moreover, the gain achieved by the ABS policy

is especially pronounced in the initial stage of the training,

e.g., when the communication rounds are less than 40, which

demonstrates that the proposed scheme is able to accelerate

the convergence of FL and hence improve the learning effi-

ciency. This gain can be essentially attributed to that while

the MaxPack policy exploits the multi-user diversity [23] by

allocating the best subchannels and power to maximize the

total number of receivable updates, the ABS strikes a balance

between the aggressive channel use and short term fairness

and hence achieves the gradient diversity [24].

5. CONCLUSION

In this paper, we have proposed a scheduling policy for FL in

the context of mobile edge networks. By adopting a metric



termed AoU, our scheme is able to account for both the stale-

ness of updates and the instantaneous channel qualities so as

to accelerate the convergence rate of FL.
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