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ABSTRACT

Most of embedded cameras use a single sensor to capture im-
ages through a color filter. They produce special images with
only one color component per pixel. Missing data are usu-
ally estimated through a demosaicking process, but this takes
undesirable computation time and may generate undesirable
color artifacts. Many embedded systems under real-time con-
straints could use this type of camera for purposes like edge
detection. In this paper, a new edge detection method is pro-
posed for the computation of partial derivative images. This
algorithm is tested on a large set of synthetic images where
edge ground truth is unquestionable. The exploitation of the
raw data of images allows not only to drastically reduce com-
putational time, but also to get edge detection results even
more precise than using certain demosaicking-based methods.

Index Terms— Edge detection, Bayer CFA, rotated filter.

1. INTRODUCTION AND MOTIVATIONS
The most of digital devices such as smartphones and tablets
embed single-CCD (CMOS) cameras. They use only one
charge-coupled device, to which a Color Filter Array (CFA)
is superposed [1]. CFAs are mosaics of color filters placed
over each pixel sensor. Different configurations exist, the
most widely used in literature remains the Bayer filter [2].
The disposition is arranged on a base of 2×2 patterns, favor-
ing the green channel, with 50% of green data(G), 25% of red
(R) and 25% of blue (B). Each pixel of the CFA image only
contains one color component out of three (see Fig.1).

The inversion process of the subsampling corresponds to
a demosaicking. This allows to visualize color images, so
the missing data can be estimated, creating a fully-defined
RGB color image. Many demosaicking algorithms have been
presented in literature [1, 3, 4, ?]. Despite their efficiency to
produce visually satisfying images, their failure to reconstruct
high-frequency data by interpolations is detrimental to low-
level analysis like edge detection. This was shown by Losson
et al. [5] and confirmed by Breier et al. [6]. Moreover, those
algorithms inevitably consume additional computation time.

Aberkane et al. [7] showed that directly edge detection
in those images is possible with a very close or even better
precision than segmentation after demosaicking. They intro-
duced two approaches to use the raw data of CFA images

for edge detection: (i) Deriche-based Luminance (DL) tech-
nique estimates partial derivative images of luminance thanks
to Deriche recursive filters [8], so that a gradient image is
computed, (ii) Deriche-based Color (DC) derivative method
also uses Deriche filters to compute partial derivatives of red,
green and blue channels so that a structure tensor is applied
[9]. Despite the best results offered by DL, methods comput-
ing luminance derivatives from Bayer CFA were not studied
deeply enough. Aberkane et al. [7] showed the failure to de-
tect isoluminant edges. Moreover, a raw image of luminance
could be directly captured with a monochrome camera. As a
Bayer CFA image offers color data, calculating color deriva-
tives is more relevant. This paper presents a new algorithm
for the computation of color partial derivatives directly from
Bayer CFA image, with a low computational complexity. The
proposed algorithm offers a better overall performance com-
pared to edge detection schemes applied to democaicking im-
age or to CFA image with fewer operations per pixel.

2. DERICHE FILTERS AND COLOR GRADIENT

2.1. The recursive Deriche filter
Deriche [10] created an optimal edge detection filter accord-
ing to Canny’s criteria [11]: unicity, good detection and good
localization. This filter can be implemented recursively al-
lowing reducing computation time [8]. Deriche used a gra-
dient approach based on two separable filters for the com-
putation of partial derivative images: (i) a smoothing filter
sα(t) approximating a Gaussian function, (ii) a derivative fil-
ter dα(t) which is the derivative of sα(t):

sα(t) = ms · (1 + α · |t|) e−α|t| (1)

dα(t) = −md · α2 · t · e−α·|t|, (2)

where α represent the standard deviation of the filter and

(a) ICFA CFA image (b) ÏG green channel (c) ÏR,B , red and blue channels

Fig. 1: Decomposition of Bayer filter array.



(ms,md) are two normalization parameters: md =
(1−e−α)

2

α2·e−α

and ms =
(1−e−α)

2

1+2·α·e−α−e−2α . Thus, the partial derivative im-
age in x direction is obtained by: (i) applying the smoothing
filter sα(t) vertically on the original image, (ii) processing
this smoothened image horizontally with the derivative filter
dα(t). Afterward, the partial derivative image in y direction
can be obtained using the same process perpendicularly.

These filters can be implemented recursively [10]. Coeffi-
cients defining the deviation of both smoothing and derivative
functions sα(t) and dα(t) depend on a single real positive pa-
rameter α. High values of α (α>1) enhance edge localization
quality, whereas small values of α (α<1) enhance edge de-
tection quality with poorer localization.

2.2. Structure Tensor: Di Zenzo gradient
A basic approach to compute a gradient of a color image
is to combine first order derivatives issued of each chan-
nel. The best known color gradient was introduced by Di
Zenzo [9] which uses the partial derivatives along x and y of
each red, green and blue component. Those partial deriva-
tives are gathered in two vectors Ix = (IRx , I

G
x , I

B
x ) and

Iy = (IRy , I
G
y , I

B
y ). For each pixel, the gradient direction θ is

chosen so the first fundamental form dI2 is maximized:

dI2(θ) = f · cos2(θ) + 2 · g · cos(θ) sin(θ) + h · sin2(θ) (3)

where f=Ix ·Ix=
∑
k=R,G,B

(
Ikx
)2

, g=Ix ·Iy=
∑
k=R,G,B

(
IkxI

k
y

)
and h=Iy ·Iy=

∑
k=R,G,B

(
Iky
)2

. This structure tensor provides
in every pixel the gradient direction θ∗ = argmax

θ∈[−π,π]

(
dI2(θ)

)
and its tied norm |∇I| = |dI2 (θ∗) |.

3. EDGE DETECTION DIRECTLY ON CFA IMAGES

Starting from Bayer [2] observation: green channel can be
assimilated to luminance, red and blue channels to chromi-
nance. SEDD (Smoothed component Estimation and Deriche
Derivative) computes a gradient by estimating bilinear inter-
polations [7]. Here, we propose to decompose the CFA image
into two channels ÏG and ÏR,B which both contain half of all
pixels arranged in a quincunx lattice (see Figs.1(b) and 1(c)).
The algorithm introduced in this paper process pixels in diag-
onal directions. We introduce a rotated Deriche filter directly
adapted from eq. (1) and (2). As diagonal pixels are separated
by a distance of

√
2 instead of 1 in usual directions (the gap

between each pixel of a color channel in a CFA image), the
parameter α must be modified so α′ =

√
2α, [7].

Each channel ÏG and ÏR,B is diagonally smoothed us-
ing eq. 1. The diagonal derivatives images IGX,α′(x, y) and
IRBX,α′(x, y) are obtained by filtering the smoothed images us-
ing eq. 2 in the perpendicular direction. Fig. 2 shows the
rotation process for compute those diagonal derivatives.

Those partial derivatives must be combined as with the
structure tensor using horizontal and vertical partial deriva-
tives. The rotated partials derivatives of a pixel P (x, y) can

be gathered in a vector Drot(x, y):

Drot(x, y) =

(
IX,α′(x, y)
IY,α′(x, y)

)
The equivalent vector D(x, y) in the straight system is com-
puted by rotating the original coordinates system by an angle
φ = −45◦. To respect spatial ratio between both straight and
rotated systems, a homothecy must be done with a factor

√
2.

The required transformation matrix is easily calculated by:

D(x, y) =
√

2 ·
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
·Drot(x, y) (4)

Going through this process for (IGX,α, IGY,α) and (IRB
X,α, IRB

Y,α)
gives the images of straight partial derivatives IGx,α, IGy,α, IRB

x,α

and IRB
y,α in half pixels for the G and RB componants. These

partial derivatives in odd pixels (for green) and partial deriva-
tives in even pixels (for others) must be estimated. Thereafter,
missing values are calculated by bilinear interpolation in the
direction perpendicular to the derivation direction. The fully-
defined partial derivative images ǏGx,α, ǏGy,α, ǏRB

x,α and ǏRB
y,α are

computed by:

Ǐx,α(x, y)=
{
Ix,α(x, y) where P (x, y) is defined (not empty)
1
2

[Ix,α(x, y − 1) + Ix,α(x, y + 1)] elsewhere.
(5)

Ǐy,α(x, y)=

{
Iy,α(x, y) where P (x, y) is defined (not empty)
1
2

[Iy,α(x− 1, y) + Iy,α(x+ 1, y)] elsewhere.
(6)

Color gradient is computed using the structure tensor (de-
tailed in Section 2.2) by considering that red and blue deriva-
tive images are equal to the chrominance derivative images.

3.1. Application to edge detection

In both methods, Di Zenzo gradient (detailed in Section 2.2)
is calculated from the estimated color partial derivative im-
ages ǏRx , ǏRy , ǏGx , ǏGy , ǏBx and ǏBy . Thus, edges can be ex-
tracted by thresholding local maxima of the gradient norm in
the gradient direction [11]. Finally, to eliminate undesirable
edges due, for example, to noise, the image of edges must be
thresholded either with a classic thresholding process or by
hysteresis [11].

rotation mirror effect

(a) rotation of ÏG

rotation mirror effect

(b) rotation of ÏR,B

Fig. 2: The rotation process of ÏG and ÏR,B .
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(a)N scores (b) TP/|Gt| (c) Number of FP (d)E(Dc, η) scores (e) Original image 800×800

(f) Crop and enlargement of the (g) Classical edge detection (h) Classical edge detection (i) SEDD edge detection directly (j) RGC edge detection directly
ground truth (image inverted) after ACPI demosaicking, after ARI demosaicking, on the Bayer CFA image, on the Bayer CFA image.

Fig. 3: Comparison and evaluation of edge detection using α=2.01. Detected edges are tied to the noisy image with σ = 4.

4. EVALUATION AND EXPERIMENTAL RESULTS

Experiments are carried out on synthetic and real images.
Smoothed component Estimation and Deriche Derivative
(SEDD), applied to CFA image, propose to use raw data di-
rectly to estimate the image partial derivatives with a adaptive
Deriche filter for edge detection [12]. Deriche filter is also ap-
plied on color images after demosaicking process. Adaptive
Color Plane Interpolation (ACPI) [13], applied to demosaick-
ing image, is a simple demosaicking procedure consisting in
making a bilinear interpolation in the direction perpendicular
to the gradient. Adaptative Residual Interpolation (ARI) [14],
interpolates colors in a residual domain and produces visu-
ally satisfying images, but has a very high computational
complexity which makes it time-consuming. Evaluations are
reported using synthetic images where the true positions of
the edges are perfectly known [15]. Let Gt be the reference
contour map corresponding to the ground truth and Dc the
detected contour map of an image I . Comparing pixel by
pixel Gt and Dc, a basic evaluation is composed of statistics:

• True Positive (TP ), commun points of Gt and Dc,
• False Positive (FP ), spurious detected edges of Dc,
• False Negative (FN ), missing boundary points of Dc,
• True Negative (TN ), common non-edge points.

Thus, described in [16], the normalized N edge detection
evaluation measure is, for FN > 0 or FP > 0:

N (Gt, Dc) =
1

FP + FN
·[

FP

|Dc|
·
∑
p∈Dc

1

1 + κFP · d2Gt(p)
+
FN

|Gt|
·
∑
p∈Gt

1

1 + κFN · d2Dc(p)

]
,

(7)
where (κFP , κFN )∈]0, 1]2 represent two scale parameters

[16], | · | denotes the cardinality of a set, and dA(p) is the
minimal Euclidian distance between a pixel p and a set A
[15]. Therefore, the measure N calculates a standardized
dissimilarity score; the closer the evaluation score is to 1,
the more the segmentation is qualified as suitable. On the
contrary, a score close to 0 corresponds to a poor detection of
contours, finally, if FP=FN=0, then N =1.

The objective here is to get the best contour map in a su-
pervised way. For that, the contours are extracted after a sup-
pression of the local non-maxima, then a threshold by hys-
teresis is applied to obtain a binary segmentation [11]. The-
oretically, to be objectively compared, the ideal contour map
of a measure must be a Dc at which the supervised evaluation
gets the highest score [17, 16]. For each better segmentation
tied toN , the false positives (FP) and percentage of true pos-
itives relative to the total number of edge pixels ofGt are also
displayed (TP/Gt). The ground truth image is available in
Fig. 3(f) and the original Bayer CFA image is available the
Fig. 3(e). Also, the last evaluation measure concerns the gra-
dient angle, η [18]. Once Dc is created, considering CDc , the
set of contour chains in Dc (i.e., at least 2 pixels per chain),
the gradient evaluation is computed as follows:

E(CDc , η) =
1

|CDc |
·
∑
p∈CDc

∑
dk∈W

[
1− |90◦ − |−→ηp −−→ηdk | |

90◦

]
/ck,

where dk represents a contour pixel belonging to W, a 3×3
window centered on p, −→ηdk the gradient orientation of dk and
ck the number of contour pixels in W, minus the central pixel.
This evaluation linearly ranges from 0 for identical angles of
−→ηp and −→ηdk to 1 for angles that differs. Note that −→ηdk and −→ηp
angles belong to [0; 180◦[ and when one direction approxi-
mates 0 and the other direction 180◦, the evaluation of these
two directions remains close to 0. These scores are presented
in Figs.3 (a-d) according to the standard deviation of the white
Gaussian noise (σ) added to the CFA image for each channel.
Therefore, regarding the proposed RGC method, the scores
of N outperform other scores.The segmentation available in
Fig. 3 (j) on the top right illustrates a better edge extraction
than detected edge after demosaicking process. The proposed
method obtains also good statistics in terms of FPs and TPs.
Finally, the RGC method obtains more errors for the gradi-
ent directions because the gradient is computed regarding an
image with empty pixels (the CFA image), contrary to edge
detection after ARI and ACPI process which is computed on
full channels.

Results presented in Fig.4 illustrates the interest to extract
directly features instead of demosaicking before segmenta-
tion. Indeed, as illustrated in Figs.4(c) and (d), demosaick-



ing creates undesirable colors, especially for edges or rup-
ture points. Each result is displayed with the same thresh-
old. Thus, obtained edges with the proposed technique are
straighter regarding the vertical boards whereas contours of
the details in the gray object on the right are well extracted
whereas demosaicking methods create a checkerboard effect.

4.1. Computational complexity
For real-time constraints, less time-consuming algorithms are
preferable. This parts reports complexity of the compared al-
gorithms: ACPI, ARI, SEDD and RGC using and the same
color edge detection process. Their complexity only differ in
(i) demosaicking process for ACPI and ARI, and (ii) partial
color derivative computation for SEDD and RGC.

Tab. 1 shows the computational complexity of those algo-
rithms. The complexity is evaluated as the number of required
elementary operations per pixel: addition, subtraction, multi-
plication and division, each one being weighted similarly, as
detailed in [7]. The expressions of the recursive Deriche (re-
cursive of order 2) equations require seven additions and eight
multiplications per pixel for the smoothing filter, seven addi-
tions and nine multiplications per pixel for the derivative filter
[10]. So 15 operations for left to right, and 15 from right to
left (causal + anti-causal), i.e., 30 operations for the smooth-
ing filter (for each (RGB) channels, i.e., 90 operations). In
the same way, 96 operations are required per pixels for the
derivative filter using a full color image (after demosaicking).

In RGC, a diagonal Deriche smoothing filter is processed
on the CFA image, which takes 15 operations for each X and

(a) Color image [19] (b) Bayer CFA image

(c) Demosaicked image with ACPI [13] (d) Demosaicked image with ARI [20]

(e) Classical edge detection in (c) (f) Classical edge detection in (d)
after ACPI demosaicking, α=2.01 after ARI demosaicking, α=2.01

(g) SEDD edge detection on (b), α=2.01 (h) RGC edge detection on (b), α=2.01

Fig. 4: Comparison of classical edge detection using color
Deriche filter and detection directly on Bayer CFA images.

Algorithms ACPI [13] ARI [20] SEDD [7] RGC

demosaicking 30 1779 0 0

Deriche smoothing 90 90 40 30

Deriche derivation 96 96 96 42

Total 216 1965 136 72

Table 1: Number of elementary operations per pixel required
for the different color partial derivative computation methods.

Y smoothened images. The diagonal derivative filter requires
2 · 16 operations per pixel. Vector conversion in eq. (4) takes
two multiplications and one addition per coordinates, which
makes 2 · 3 operations per pixel. Interpolation of missing
derivative values in eq. (5) and (6) takes 2 operations per co-
ordinate in half pixels of both channels, which is equivalent
to 2 · 2·22 = 4 operations per pixel. Hence derivation step of
RGC takes 2 · 21 operations per pixel. ARI demosaicking is
far more complex because its complexity as 1245 operations
to estimate each missing green value and 534 operations to
estimate a red or blue value. Thus, RGC allows to dramat-
ically reduce the computational complexity. The number of
elementary operations required is (i) three times lower than
ACPI, (ii) almost twenty times lower than RI, and (iii) twice
lower than SEDD which is the method with no demosaicking
proposed in [7] that offered the best edge quality with the
lowest complexity among color derivative methods.

5. CONCLUSION

Aberkane et al. in [7] made a first investigation of gradient-
oriented edge detection methods that exploit raw CFA images
and bypass the demosaicking step, with the main goal of re-
ducing computational time. Their best color partial deriva-
tive computation method SEDD still offered an average per-
formance lower than ACPI, which uses standard Deriche fil-
ters after a simple but efficient demosaicking process. This
work aimed to propose other CFA-based multi-channel partial
derivative computation methods with better performances and
lower computational time than those using demosaicking. A
new approach is presented in this paper, computing the partial
derivatives of the green channel and the union of red and blue
channels. This innovative approach is the use of diagonal De-
riche filters also implementable with standard Deriche filters
on a rotated image. This method is tested on a dataset of syn-
thetic images. and the influence the Gaussian noise outper-
forms other methods, even though the gradient and its direc-
tion are estimated on images containing empty pixels. Even-
tually computational complexity showed that RGC allows to
considerably reduce the number of elementary operations per
pixel compared to demosaicking process. Several applica-
tions may be investigated using the proposed method, such
that develop a demosaicking technique using contour orienta-
tions [21] or up-sample images [22].
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