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ABSTRACT

Unsupervised anomaly detection on time-series is widespread
in the industry and an active research topic. Recently, im-
pressive results have been obtained by leveraging the pro-
gresses of deep learning, and in particular through the use of
Long Short Term Memory (LSTM) neural networks. Yet, lat-
est state-of-the-art unsupervised LSTM-based solutions still
require a priori knowledge about normality as they need to
train the model on time-series without any anomaly. In con-
trast, we propose a novel anomaly detector, coined as LSTM-
Decomposed (LSTM-D), that does not require this normal-
ity knowledge. More specifically, we pre-process the time-
series with a spectral based information reduction such that
the LSTM-based detector receiving the time-series becomes
less likely to learn the anomaly, and hence miss its detection.
We motivate our intuitions through simple examples and ver-
ify the performance improvement with respect to state-of-the-
art solutions in a reference and publicly available data set.

Index Terms— Anomaly Detection, Long Short Tempo-
ral Memory, Recurrent Neural Networks, Unsupervised Learn-
ing, Discrete Fourier Transform

1. INTRODUCTION AND RELATED WORKS

Anomaly Detection refers to the problem of finding anoma-
lous patterns in a data. The definition of an anomalous pattern
can vary from a use-case to another. When that definition is
given with the data, explicitly or implicitly through labels, the
problem is categorized as supervised anomaly detection [1].
When no such information is provided, the problem is called
unsupervised anomaly detection and commonly refers to an
anomaly being any rare pattern [1]. This approach also some-
times refers to an outlier detection [2].

In real use-cases, anomaly labels or any knowledge about
the anomaly can be hard to obtain, which justifies the growing
interest for unsupervised approaches [3]. To apply unsuper-
vised anomaly detection on time-series, companies such as
Amazon, Twitter, Etsy or Yahoo have developed their own
models that are a mixture of classical statistical, decomposi-
tion and machine learning algorithms [4—7]. Some models are
also bio-inspired, e.g., modeling the episodic memory of the
cortex [8]. Recently, Convolutional Neural Networks (CNN)

have been used to efficiently learn normal patterns and re-
veal anomalous ones [9]. One of the most recent state-of-
the-art approach is LSTM based anomaly detection [10] that
recently had a great impact in the unsupervised anomaly de-
tection field [11]. In [12], LSTM neural networks are used
to predict a time-series after training on a normal time-series
without any anomaly. A threshold is then applied to the error
between the prediction and the true time-series to find anoma-
lous patterns. Some simple one-layer LSTM networks can be
used as in [11] although stacked (or Deep) LSTM networks
with several layers show better results, as in [12—14].
Although these approaches are denoted as unsupervised
as they do not need any labeled anomaly, they still require to
train on normal time-series. The goal of this paper is to tackle
this limitation. More specifically, our main contributions are:

¢ We propose a novel anomaly detector, coined as LSTM
Decomposed (LSTM-D) anomaly detector, which con-
sists of a spectral and information reduction based algo-
rithm that is applied before feeding the state-of-the-art
LSTM based detector.

e We verify the improvement detection with respect to
state-of-the-art algorithms on a publicly available data
set. We furthermore empirically show a strong reduc-
tion of the computation time, due to sub-sampling of
the input time-series.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

2.1. System Model

Following the conventional notations for anomaly detec-
tion [3, 12, 14], we consider a time-series x € R™ with
ne € N being the number of samples, such that

X = {20, T1,..; T —1}- (H

Each time-series sample z;,i € {0, ..., n. — 1} is potentially
corrupted by an anomaly that modifies its “normal behaviour”
in the sense that the value at this point does not fit with the
usual pattern of the time-series. The goal of the anomaly de-
tector is then to associate to each sample x;,7 € {0,...,ne —
1} an estimated binary anomaly label a; € {0, 1} to indicate



whether a sample is corrupted by an anomaly. These labels
are then stacked together to form the vector

a = {a0,d1, . n. 1} )

To evaluate the anomaly detection with respect to the true la-
bels ay,, we follow common use and report Precision, Recall
and f; metrics [9, 12].

2.2. Anomaly Detection using LSTM Networks [12]

We now review our baseline algorithm formed by a stacked
LSTM based anomaly detector from [12, 14].

LSTM Predictor The first block of the anomaly detector
is formed by an LSTM neural network, which is a recur-
rent neural network that has proven very efficient in capturing
the temporal dependencies of a time-series using an internal
memory [10, 15].

The LTSM neural network is trained on a normal time-
series to predict x; from past samples {2;_ 1, ..., Z;—1 }, for
a given time window w. The intuition being that the LSTM
has learned the properties of the time-series if it is capable
of predicting the next sample from past ones. Clearly, the
window width w is a parameter with a significant impact on
the detection accuracy (Sce [13]).

Anomaly Detection By comparing the true value of the ith
sample z; with the predicted value, the prediction error for
the 7th sample is formed as:

e; = |X; — Xy 3)

Using this prediction error, a threshold function T, is applied
to decide whether the sample is an anomaly or not:

Ta(ez') = {a‘i = ]lei,>0“7 Vi€ {0’”’6 - 1}} 4
with the anomaly threshold 8% € [0,1]. This threshold is
computed using Maximum Likelihood Estimation (MLE) on

the prediction error so as to balance the ratio between false
positive and missed detections.

Prior normality knowledge

TLS ™ Ta

X m—)

Fig. 1: Illustration of the LSTM anomaly detector from [12].

3. PROPOSED APPROACH: LSTM-DECOMPOSED

‘We now proposed a modified LSTM-based anomaly detector
that is robust with respect to the lack of normality knowledge.

3.1. Some Insights
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Fig. 2: LSTM prediction errors.

As a first step to gain intuition, we show in Fig. 2 the
prediction error obtained when using the LTSM-based detec-
tor on a toy-example time-series. We first generate a time-
series from a simple sinusoid such that z(t) = sin(27 fot)
with fo = 1/500 and then corrupt it with an anomaly mak-
ing the time-series constant for some time. The exact same
time-series is then enriched by adding two modes and some
noise to obtain z'(t) = x(t) + sin(2n fit) + sin(27 fot) + 7.
with f; = 1/100, fo = 1/20, and 7 being a standard additive
white Gaussian noise.

We can then observe that the trained LSTM discriminates
the anomaly for the simple time-series but is unable to do so
for the more complex one. LSTM networks work as black
boxes such that it is hard to provide a definitive explanation.
Yet, a tentative interpretation is that the LSTM network learns
in a very sharp and precise manner a simple model, and hence
discriminates well an anomaly. In contrast, it is forced to
make a compromise between many elements when faced with
a more complex time-series, and hence tends to learn more
easily the anomaly, and consequently miss its detection.

3.2. LSTM-Decomposed (LSTM-D)

Building on the above intuition, we propose to introduce a
pre-processing step before the LSTM network to simplify the
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Fig. 3: Illustration of the LSTM-D anomaly detector.

time-series. This can be thought as zooming in or out to better
catch an anomalous pattern with respect to others.

We propose to apply a bank of Low Pass Filters (LPF) to
extract different views or features of the time-series. We will
show later how the Discrete Fourier’s Transform (DFT) can
be used to find appropriate frequency cuts. We then apply the
LSTM anomaly detection described in Section 2.2 on each of
the filtered time-series.

Although this method appears at first sight to increase
the complexity due to the multiplication of the detectors, it
actually results for most cases in a strong complexity drop.
This is due to the sampling rate reduction allowed by the
LPE. Indeed, following the Nyquist-Shannon sampling the-
orem, sampling at a rate 2 x f after LPF is sufficient to re-
construct the time-series [16]. In practice, we use a sampling
rate of fy = w x f with w = 20 in order to have these
w = 20 points within every period of %

Mathematically, this pre-processing is written as follows.
Let us denote by F a set of dominant modes (see Section 3.3
for the frequency selection process). Then, Vf € F, we
denote by x the time-series obtained afier LPF and sub-
sampling, and we write

x; = Trs(x, f) (&)

where TFg represents the LPF followed by the sub-sampling
described above.

As descriptions of resulting time-series for each fre-
quency f are different, one value of 6% is chosen for each fre-
quency f. Without any a posteriori anomaly label, the system
uses all frequencies within F and combines the anomalies
detected for every frequency. A posteriori labels can also be
used to find the best dominant mode(s). The process of the
LSTM-D anomaly detector is summarized in Fig. 4.

3.3. Dominant Modes and DFT

The frequency set F is a key parameter that can be arbi-
trary chosen and we propose below one motivated design for

p X X
X1 m— Trs Trsry  m— Ta

Fig. 4: The proposed LSTM-Decomposed anomaly detector.

choosing the frequencies. Due to the absence of any a priori
knowledge on the time-series and on anomalies, we choose to
focus on the main frequency components of the time-series.
Our motivating intuition being that applying a LPF with the
most significant frequencies allows to preserve the important
information while simplifying the time-series.

Consequently, we compute the spectral representation
of the time-series using a DFT [18]. Let us denote by
{X’ [f%] Z;Bl for fi, = nﬁ the complex valued spectral repre-
sentation with

ne—1
- & X 1 1
X[fk} = Z l‘me_27mmfk7 vfk € {07 R ERRE) _} . (6)
Ne 2
m=0
Building on (6), we select the most significant modes, i.e.,
all modes whose amplitudes are above a given threshold de-
noted by #7 and computed using MLE. Mathematically, this

is written as

Fo {fk‘|X[fk]| > 0%V, € {oni%}} 7

For clarity, the whole pre-processing is summarized in Fig. 3.

3.4. Qualitative Evaluation

Before turning to a quantitative performance evaluation in the
next section, we start with a qualitative evaluation through the
toy example described in Section 3.1. The prediction error us-
ing the LSTM-D is then shown in Fig. 5 for both the simple
and the more complex time-series. In contrast to the conven-
tional LSTM-based detector, the proposed approach clearly
finds the anomaly in the complex time-series.



Data Model Computation | b icion | Recall | F1
training time (s)
ECG LSTM-no prior knowledge 2661 0 0 0
ECG LSTM-with prior knowledge 1911 1 1 1
ECG LSTM-D (proposed approach) 12 1 1 1
PowerDemand LSTM-no prior knowledge 2877 0.95 0.68 0.79
PowerDemand LSTM-with prior knowledge 2355 0.95 1 0.97
PowerDemand | LSTM-D (proposed approach) 3.5 0.99 1 0.99
SpaceShuttle LSTM-no prior knowledge 2057 1 0.84 0.91
SpaceShuttle LSTM-with prior knowledge 1412 1 1 1
SpaceShuttle | LSTM-D (proposed approach) 5 0.99 1 0.99

Table 1: Performance cvaluation on the dataset from [17]. Simulations were run on an Intel Core i7-7700 CPU 3.60GHz.
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Fig. 5: LSTM-D prediction errors.

4. SIMULATION RESULTS

4.1. Approach

As a reference baseline, we use the anomaly detector from
[12, 14] formed by a stacked LSTM (30 units on first layer,
20 units on second layer). To emphasize the contribution
of our approach, we use the same architecture for the pro-
posed LSTM-D model. Note that all approaches require to
tune several hyper-parameters. In particular, the thresholds 6%
are optimized through a validation data set while LSTM from
[12, 14] requires to also optimize the width w.

4.2. Datasets

For the performance evaluation, we use 3 datasets from the
reference paper [12, 14]. The electrocardiograms (ECG)

dataset contains a single anomaly corresponding to a pre-
ventricular contraction. The power demand dataset shows
power consumption with normal behavior being weeks con-
taining 5 peaks corresponding to weekdays followed by 2 dips
corresponding to weekends. This dataset contains 3 anoma-
lous patterns. Finally, the space shuttle Marotta valve dataset
containing 3 anomalous regions.

It is important to note that anomaly labels are time win-
dows containing an anomalous pattern. Consequently, we
also aim at detecting anomalous windows and we consider
that an anomalous patterns has been found when at least one
point in that pattern has been detected as anomalous.

4.3. Performance Evaluation and Discussion

We can observe in Table 1 that the performance of the stacked
LSTM from the literature heavily suffers from training on
data with anomalies, i.e., from the lack of a priori normal-
ity knowledge. The coarse granularity in the objective values
comes from the small number of anomalies in the data set.
To get a more thorough performance evaluation, our next step
will be to evaluate our approach on larger data sets, and in par-
ticular on the publicly available Yahoo Webscope data set'.
Finally, we can observe a strong reduction of the computation
time due to the important sub-sampling (See Section 3.2).

5. DISCUSSION AND FUTURE WORK

In this paper, we have introduced a spectral based pre-
processing approach to make the state-of-the-art LSTM based
anomaly detector robust to the lack of prior normality knowl-
edge. Interestingly, the proposed approach also leads to a
strong complexity reduction. This is a first approach towards
the design of anomaly detectors without normality knowledge
and many aspects remain to be further investigated. For ex-
ample, the LPF could be replaced by a CNN as its properties
are similar although sharing with the LSTM the same loss
function.

Thitps://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
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