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ABSTRACT
Hyperspectral image unmixing is an inverse problem aiming at

recovering the spectral signatures of pure materials of interest (called
endmembers) and estimating their proportions (called abundances)
in every pixel of the image. However, in spite of a tremendous ap-
plicative potential and the avent of new satellite sensors with high
temporal resolution, multitemporal hyperspectral unmixing is still
a relatively underexplored research avenue in the community, com-
pared to standard image unmixing. In this paper, we propose a new
framework for multitemporal unmixing and endmember extraction
based on a state-space model, and present a proof of concept on sim-
ulated data to show how this representation can be used to inform
multitemporal unmixing with external prior knowledge, or on the
contrary to learn the dynamics of the quantities involved from data
using neural network architectures adapted to the identification of
dynamical systems.

Index Terms— Hyperspectral imaging, time series, spectral un-
mixing, data assimilation, recurrent neural networks

1. INTRODUCTION

Hyperspectral images allow a precise identification of the materi-
als present in the observed scene thanks to their very fine spectral
resolution. However, the spatial resolution of this type of images
is typically more limited than that of mutlispectral or conventional
color images. This favors the appearance of mixed pixels, i.e. pix-
els for which the corresponding sensor field of view includes several
materials of interest [1]. If one assumes that the target surface is flat
and each material occupies a certain fraction of the field of view, then
modeling an observed signature at the sensor level can be modeled as
a linear combination of the signatures of the endmembers, giving the
popular linear mixing model. Once the endmember signatures are
available (either a priori or extracted from the image data), the abun-
dances are typically estimated using constrained least squares (the
abundances of the different materials, being proportions, are in most
cases constrained to be positive and to sum to one in each pixel).

In recent years, limitations of conventional linear hyperspectral
unmixing approaches came in the spotlight in the community, and
the focus of new research has shifted somewhat from handling non-
linear mixing phenomena [2] to taking into account the intra class
variability of the materials [3, 4]. On the latter point, many algo-
rithms and models have been designed lately, with a focus on deal-
ing with the variability of the endmembers in the image (spatial)
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domain (e.g. [5]) . However, conversely, the temporal dynamics
of the endmembers has rarely been adressed from a methodological
point of view, despite a considerable applicative potential in remote
sensing: plume detection and tracking, seasonal variations of vege-
tation, and so on. New hyperspectral sensors with a high temporal
revisit are also to be launched in the next few years, see e.g. the
EnMAP mission [6]. The reasons for this are multiple, be it because
of the complexity of the spatiotemporal dynamics of endmembers
and abundances, or because of the difficulty to obtain exploitable
co-registered hyperspectral time series with a sufficient number of
frames.

Still, a few works have tried to tackle this challenging problem,
with various assumptions on the data and dynamics. For example,
the work of [7] introduces continuity hypotheses on the abundances
maps and is robust to abrupt changes from one frame to the other.
In [8] is introduced another algorithm for multitemporal hyperspec-
tral image unmixing, where dynamic changes in brightness of the
images are accounted for, and the abundances are favored to have a
sparsely varying support between two time frames. More recently,
the study in [9] designed an algorithm allowing to use co-registered
multispectral and hyperspectral images together to improve the num-
ber of available dates and hence the unmixing performance.

Interestingly, in [8], a state-space interpretation of the proposed
unmixing algorithm is put forward as a general framework to model
hyperspectral time series (even though the proposed algorithm is
only a particular case). In this paper, we use a similar formulation of
the unmixing problem as the dynamical evolution of a state variable
Xt ∈ Rn, where n is the dimension of the state variable. Typically,
in hyperspectral imaging, natural choices for the state variable is the
endmember signatures, their abundance maps, or both. This state
is related to the at sensor observation Yt ∈ RL×N , where L is the
number of spectral bands andN is the number of pixels in the image.
The dynamical model formulation writes:

dXt

dt
= F(Xt) + ηt (1)

Yt = H(Xt) + εt (2)

Eq. (1) is the dynamical model prescribing the evolution of the state
variable in time. This so-called state equation is stated as an (au-
tonomous here) Ordinary Differential Equation (ODE) (as done here
through the dynamical operator F ) or a Partial Differential Equation
(PDE), depending on the assumptions made on the spatio-temporal
dynamics of the state variable (with an additive noise or model error
ηt). Eq. (2) is the observation equation, linking the state variable
to the observed data at each time step. For hyperspectral image un-
mixing applications, this equation represents the mixing model H,
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linking parameters of the unmixing to the data, together with an ad-
ditive noise εt.

This model is very generic, and as such, in this paper, we are
only going to consider that the state variable is one time-varying
endmember, or the whole set of endmembers {St}, t = 1, ..., T ,
St ∈ RL×P (with the same temporal evolution), where T is the
number of frames considered. We also assume that the abundances
are constant in time. Different generalizations or alternative choices
could be considered as well. We use a standard linear mixing model
as the observation equation. Eqs. (1) and (2) then rewrite:

dsp,t
dt

= F(sp,t) + ηt (3)

Yt = StA + εt (4)

where p is the index of the considered endmember, p = 1...P , and
A ∈ RP×N is the abundance matrix, subject to the usual nonnega-
tivity and column sum-to-one constraints. We can also reformulate
the state equation in a discrete way, by writing:

sp,t+1 = Φ(sp,t) + ηt (5)

where Φ(sp,t) = sp,t +
∫ t+1

t
F(sp,u)du is an integral version of

the infinitesimal operator F . In this work, we show on two differ-
ent applications the relevance of using state-space model represen-
tations to model hyperspectral time series. We first show the interest
of injecting a priori physical knowledge on the endmember dynam-
ics when noisy, scarce, or irregularly sampled data is available. This
allows to use variational data assimilation techniques to inform the
dynamical endmember extraction. Second, we focus on dynamical
model learning when a pure pixel sequence for each endmember is
available. We resort state-of-the-art neural network techniques to
learn the dynamics of the endmembers. In both cases, we show the
interest of this framework on simulated datasets, in comparison with
classical endmember extraction and naive dynamical systems learn-
ing techniques.

The remainder of this paper is organized as follows: Section 2
shows how to use the state space formulation with a known physi-
cal model to improve endmember estimation and allow to interpolate
and extrapolate endmembers in time. Section 3 uses the same for-
malism in a case where regularly sampled data is available to learn
endmember dynamics from data. Section 4 provides some conclud-
ing remarks and presents a few future research avenues.

2. DATA ASSIMILATION FOR PHYSICS INFORMED
MULTITEMPORAL ENDMEMBER ESTIMATION

In this section, we explain how injecting a priori knowledge on the
endmember dynamics can be a precious tool for multitemporal end-
member extraction. We lay out a simple endmember trajectory esti-
mation technique and validate it on a simulated dataset.

2.1. Variational endmember trajectory estimation

Data assimilation refers to a set of techniques [10] aiming at com-
bining a (possibly imperfect) dynamical model on a state variable
and noisy and/or incomplete observations related to estimate the se-
quence of state variables in the best way possible. One of the corner-
stone data assimilation techniques is the well-known Kalman filter
and its variants which can circumvent its limitations (namely lin-
earity and gaussianity assumptions). Another class of methods is
gathered in the variational data assimilation framework. The idea
is to define a cost function to estimate the initial state variable, such

that its propagation with the dynamical model fits the observations
well, depending on the relative confidence one has on the data and
on the model.

In our application, knowing the dynamics and abundances, and
given a time series of hyperspectral images, not necessarily regularly
sampled, the latter formalism can be used for dynamical endmember
extraction. Indeed, we can estimate the optimal trajectory for the
endmembers by solving the following optimization problem:

arg min
S0

1

2

(
T∑
t=0

||Yt − StA||2F +

T∑
t=1

λ||St −Φ(St−1)||2F

)
(6)

where St = Φ(St−1) (here, the model is applied in the same way
to each endmember, which is why we use the same symbol, with a
slight abuse of notation). Since the model Φ is known or at least
its outpouts can be numerically computed, we only need to optimize
over the initial condition S0. The obtained sequence corresponds to
a Maximum A Posteriori (MAP) estimate using a Gaussian isotropic
prior on the model error and on the noise, together with a one step
homogeneous Markovian assumption on the dynamics. In the gen-
eral case, there are many techniques to solve this optimization prob-
lem efficiently [11]. In simple cases, e.g. with a linear dynamical
model as in the next section, closed form solutions for the optimal
sequence of endmembers can be obtained.

2.2. Experimental results

Here, we design a simple simulated dataset to show how we can
use the previous method to estimate endmember trajectories in a ro-
bust way from noisy data. We consider linear dynamics via a sinu-
soidal variation of a single endmember around a constant spectrum
s̄: sp,t = s̄p + s̃p,t for a single endmember sp,t ∈ RL (t = 1, ...T
with T = 20). All the endmembers (including the initial value of
the variable part s̃p,0) were randomly chosen in the USGS spectral
library (so here L = 224). We use second order linear dynamics
(corresponding to a sinusoidal variation), applied in the same way to
each spectral band (we drop the endmember index here to keep the
notation uncluttered):

Σl,t =

[
sl,t
ṡl,t

]
Σ̇l,t =

[
0 1
β 0

]
Σl,t ∀l (7)

We augment the state variable (and change the second term in (6)
accordingly) with the velocity ṡt, since the dynamical model uses it,
although it is never observed [12]! We set β = −0.1. We generated
Dirichlet distributed abundances, and added 20dB white Gaussian
noise to the linearly mixed data at each time step:

Yt = S6=pA6=p + sta
>
p + εt (8)

where ap ∈ RN×1 is the (vectorized) abundance map of endmember
p. The first term on the right handside is the constant part of the
data (the contributions from all the endmembers except one), and
the second one is the contribution of the variable endmember. The
last term is the additive noise.

In the proposed approach, we start by performing a crude es-
timate of the endmembers using the Vertex Component Analysis
(VCA) [13], and estimate imperfect abundances on the first frame.
Then we use those abundances as well as the dynamical model to
solve the optimization problem (6). We show in Fig. 1 the endmem-
ber estimation performance for each time frame, in terms of Root
Mean Squared Error: RMSE = 1√

L
||st − ŝt||2, where ŝt is the

obtained estimate (only of the variable part of the spectrum) and st



Fig. 1. RMSE of the endmember trajectory with known dynami-
cal model compared to VCA frame-by-frame extraction (left). End-
member reconstruction with known dynamical model for the last
frame (T = 20), using VCA on each frame and variational data
assimilation (middle). Zoomed version (right).

is the ground truth. We compare the perfomance with that of the
VCA applied independently to each time frame. We see that the
VCA generally obtains worse performance than variational assimi-
lation, although for two frames it achieves a lower RMSE. However,
the use of the temporal correlation and the knowledge of the the end-
member dynamics regularizes the sequence obtained by variational
data assimilation. Another issue with the VCA is that the endmem-
bers need to be aligned from one time frame to the other using a
clustering step, which is not necessary with variational data assim-
ilation. In some cases, VCA obtains very high RMSE, most likely
because of the relatively low SNR used here. For illustrative pur-
poses, we also show the spectra extracted by both methods for the
last time frame. Here it is clear that the VCA was not able to pro-
duce a denoised estimate the variable part of the spectrum because
of the noise and the relatively low amplitude of the variable part
compared to the mean value s̄ (which was subtracted to the obtained
estimates). On the other hand the endmember obtained via the vari-
ational assimilation procedure is noiseless and closer to the ground
truth. Of course, these results need to be mitigated by the fact that the
knowledge of the dynamical model is a strong assumption, but the
point of this section was to show the interest of introducing physical
priors to multitemporal endmember estimation. Besides, variational
data assimilation also allows to interpolate between irregularly sam-
pled time frames, to filter out the data (as done here, in a way) or
perform predictions in the future. In many practical cases, however,
a dynamical model will not be available a priori. In the next section,
we are going to focus on cases where the dynamical model is not
known, but can be learned from data using neural networks.

3. LEARNING ENDMEMBER DYNAMICS

In this section, we shift the paradigm of multitemporal hyperspec-
tral data processing from data assimilation to the identification of
endmember dynamics. We assume here that we have access to a
sequence of each varying endmember with regularly sampled data.
In practice, it is sufficient (neglecting spatial endmember variability
and with constant abundances through time) to identify a pure pixel
in the dataset for each endmember. Our goal is to be able to iden-
tify the dynamical operators F and/or Φ by learning them from data.
The final goal would typically to use the learned model subsequently
as in the previous section for interpolation, denoising or prediction
of endmembers or hyperspectral image generation.

3.1. Neural Network architectures to learn dynamical systems

Several recent dynamical system identification techniques [14, 15]
can be used predict sp,t+1 from sp,t. Natural candidates to learn a

parametrization of Φ are recurrent neural networks, such as LSTMs,
which are able to handle long term temporal correlations. Recent
papers (e.g. [15]) have shown that to learn dynamical operators from
data using neural networks, architectures such as recurrent Residual
Networks (Resnets) are of particular interest The main reason is that
ResNets possess a clear mathematical relationship with the integra-
tion in time of differential equations [16]. Indeed, a ResNet architec-
ture replaces the learning of an input/output relationship y = fψ(x)
(whereψ gathers the parameters of the neural network) by the learn-
ing of a deviation from the identity: y = x+hfψ(x). If x = st and
y = st+1, the residual block directly corresponds to a parametriza-
tion of the infitesimal operator F . This operator is integrated in time
by the recurrence of the residual block (the weights being shared
from one recurrent layer to the next), which implements a simple
explicit Euler integration scheme:

st+1 = st + hF(st) (9)

where h corresponds to the integration step. Similarly, one can imag-
ine resorting to more complex integration schemes such as the pop-
ular 4th order Runge-Kutta (RK4) scheme by simply hard-coding
its equations directly in the neural network architecture, while only
learning the parametrization of F . The RK4 integration scheme
writes:

st+1 = st +

4∑
i=1

αiki (10)

where ki = F(st + βiki−1), k0 = 0 and αi and βi are fixed
parameters (depending only on the integration step). We see that a
RK4 scheme can also be hard-wired into a neural network by sim-
ply applying several times the residual block F in sequence. An
illustration of the three proposed architectures to learn the endmem-
ber dynamics is shown in Fig. 2. In every case, we can train the
networks with the global RMSE as a cost function:

L(̂s, s) =

P∑
p=1

T∑
t=1

||̂sp,t −Φ(sp,t−1)||22. (11)

3.2. Experimental results

To validate and compare the different neural network architectures
introduced in the previous section, we design a semi-realistic hyper-
spectral image time series. We consider P = 4 endmember sig-
natures extracted from the DFC 2013 Houston dataset [17], corre-
sponding to vegetation, metallic roofs, concrete and asphalt. Then
we simulate the effect on the reflectance spectra of a changing inci-
dence angle θ0 from the sun within a few hours, while the emergence
angle θ = 30◦ is constant. We first obtain albedo spectra of the
endmembers by inverting the Hapke model [18, 19], assuming Lam-
bertian photometric parameters. We simulate the evolution of the
incidence angle with time using a similar model to that of Eq. (7), so
that: θ0(t) = cos( 2π

τ
t), with τ = 24h. We simulate T = 30 time

steps over three hours. 20 will be used for training, and 10 will be
used for testing. Then we plug the angles in a simplified version of
the Hapke model [19] to obtain reflectance spectra (in the same way
for each material, hence we drop the index p here):

sl,t = (ωl, µ, µ0(t)) =
ωl

(1 + 2µ
√

1− ωl)(1 + 2µ0(t)
√

1− ωl)
(12)

where ωl is the albedo of the material in spectral band l, µ = cos(θ),
and µ0(t) = cos(θ0(t)). In the end, contrary to section 2, we obtain
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Fig. 2. Different neural network architectures to learn endmember dynamics. Only fully connected layers are used, together with ReLu
activaions. The three architectures have a comparable number of trainable parameters (around 20k). The number of neurons used in the
experiments for each fully connected layer is indicated above them.

a nonlinear dynamical model (the same for each endmember), since
in each band the reflectance is a nonlinear function of the incidence
angle, which is subject to linear dynamics. We can then generate
image data if we want using abundances extracted by an unmixing
algorithm using a subset of the DFC 2013 data (around the stadium,
as used in e.g. [5]) and the extracted signatures. We add 30dB white
Gaussian noise. This image data will be useful to compare the end-
member extraction performance with that of VCA.
We train the three proposed architectures in the same way, using the
cost function (6), using the ADAM optimizer with batches of P = 4
samples (one trajectory for each endmember). Details of each ar-
chitecture can be found in Fig. 2. We train the models for 50000
epochs, which is usually more than enough for all models to con-
verge. The first Ttrain = 20 samples only are used for training.
To test the dynamical system identification peformance, we use each
trained model to predict the remaining 10 samples and compare the
RMSEs to the ground truth. We also compare the results to those
obtained by VCA, as a baseline. Even though VCA does not have
access to the endmember time series, it still has access to all the im-
age test data to extract endmembers, which is not the case for the
recurrent neural networks which are predicting the endmembers us-
ing the learned dynamical model. A clustering step is still necessary
to align the endmembers in all frames.
The results in terms of RMSE as a function of the time step, for
each material are shown in Fig. 3. In Fig. 4 are shown the predicted
signatures at time step Ttrain + 4. We can see that for vegetation,
the VCA baseline always outperforms the predictions from all mod-
els. However, for other materials, which are spectrally closer and
for which confusions can occur, VCA usually obtains correct per-
formance except for certain time frames where it fails to extract a
correct endmember (this can be due to a bad clustering step). The
LSTM predictions are of correct quality, but still comprise a bit of
noise, which seems to indicate that this approach overfits the train-
ing data and is not entirely able to generalize. The Euler and RK4
schemes obtain the best performance, with a slight advantage to the
RK4 model, which uses a more refined integration scheme. These
results show that when learning dynamical systems, using adapted
recurrent neural network architectures allowing to learn a dynami-
cal model and integrate it through time are more performant than
classical models such as vanilla LSTMs.

4. CONCLUSION

We have proposed to model hyperspectral time series using state
space models, to account for the dynamics of the endmembers or

Fig. 3. RMSE for all the tested methods plotted against the consid-
ered prediction time step (top: with VCA baseline, bottom, without
VCA baseline). From left to right: vegetation, metallic roofs, con-
crete, asphalt.

Fig. 4. Predicted spectra at Ttrain + 4 for vegetation, for all tested
methods (zoomed version on the right)

the abundances for unmixing applications. We have designed proofs
of concept showing that on the one hand, incorporating prior phys-
ical knowledge on endmember dynamics allows for a much better
endmember time series extraction than classical endmember extrac-
tion technique, and on the other hand that when this prior knowledge
is not known, it can be efficiently learned from data using adapted
neural network architectures. This works opens a large number of
future research avenues. Being able to handle irregularly sampled
data is crucial, and has been shown to be possible even for chaotic
systems [20]. We are designing a fully blind unmixing version of the
proposed endmember dynamics identification, where a trajectory of
endmembers would not be required but would be obtained directly
from image data. Also, we are currently working on the application
of these techniques to real hyperspectral time series.
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