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ABSTRACT

This paper tackles the problem of user scheduling in satel-
lite content delivery networks with precoding. The clustering
process has to consider two crucial and independent charac-
teristics of the user terminals. On the one hand, users belong-
ing to the same group shall have a reduced Euclidean norm
between their channel vectors in order to obtain the maxi-
mum precoding gain. On the other hand, with the aim of
exploiting the multicast capabilities of the system, user ter-
minals grouped in the same cluster shall have requested the
same content. The resulting clustering problem is formulated
as a multigraph (also known as multiview) spectral cluster-
ing problem. The paper shows that this unsupervised learning
framework is able to capture the different peculiarities of the
mentioned problem. Two different techniques are introduced
and validated in a close-to-real numerical simulation.

1. INTRODUCTION

In the early adoptions of 5G, the satellite segment is identified
as a key enabler of content distribution to the edge infrastruc-
ture [1]. The capability of reaching a large set of content re-
quests in a single transmission results an attractive feature for
content providers. Note that this is done by the intrinsic mul-
ticast transmission nature of the satellite system. In this paper,
we investigate the problem of user scheduling in a content de-
livery satellite system with precoding. Although the recent
success of precoding for increasing the satellite throughput is
known [2], a study dealing with user scheduling in content-
centric systems is missing.

Scheduling in multibeam satellite systems employing pre-
coding has been investigated in the recent years [2-9]. A
scheduling technique that considers the rate fairness as a key
performance indicator can be found in [3]. Most of all satel-
lite standards embed more than one UT information in the
same codeword in order to obtain high channel coding gains.
Due to that, the scheduling process consists of grouping users
from the same beam to be served over the same frame. At-
tending the UT channel vector, the work in [4] proposes to
opportunistically group users based on their fed back signal-
to-interference-plus-noise ratio (SINR). The work in [5] clus-
ters UTs which are geographically close. In [6] it is pro-
posed to schedule UT having similar channel vectors over the
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same frame and schedule UTs in adjacent beams consider-
ing orthogonal channel vectors. A similar approach is done
in [9] but only considering the geographical location of the
UTs. In [2,7, 10] the authors consider user scheduling of UTs
presenting the minimum Euclidean distance of their channel.
This notion is extended in [8] by considering the k-means
algorithm [11] and alternative similarity UT channel vector
metrics.

None of the mentioned techniques consider the user
grouping problem from the joint perspective of the precoding
and content delivery operation as we perform in the paper. In
particular, we aim to combine two crucial aspects of next gen-
eration satellite system. First, user scheduling in systems with
precoding shall be driven by its channel vector characteristics.
Second, in order to exploit the benefits of the multicast trans-
mission, users requesting the same content shall be grouped
together in order to minimize the communication overhead.

Bearing in mind the good performance of spectral clus-
tering [12] for user grouping in beam-free satellite systems
with precoding [13], in here we opt to consider the framework
of multigraph clustering [14]. In multigraph (also known as
multiview) clustering, the learning is performed over differ-
ent undirected weighted graphs that share the same vertices
but different weights. For our case, we assume that each UT
is represented by a vertex and two different graphs are con-
structed; namely, one that informs about the channel vectors
and another one is related to the content requests of each UT.
Different techniques based on spectral clustering are analysed
and validated in a real multibeam coverage area. To the best
of authors knowledge, this is the first time multigraph spectral
clustering is employed in the wireless communication arena.
Based on the numerical results, this unsupervised learning ap-
proach is a promising solution for clustering wireless hetero-
geneous data aiming to support the next generation content-
centric radio resource management mechanisms.

2. CONTENT DELIVERY AND PRECODING IN
MULTIBEAM SATELLITE SYSTEMS

2.1. System Model

We consider a forward link transmission of a single geosta-
tionary satellite system, consisting of one satellite payload
equipped with an array fed reflector with /N feed elements
and K satellite user terminals (UTs). The UT set is denoted
by K = {1,2,..., K}. Adhering to the commercial satellite
system scenario, we focus on the case where K >> N.



The forward link channels between the gateway (GW)
and the UTs are described by the channel matrix H =

(hy,hs,....hg)" € CEXN where hy, € CN*! denotes
the channel between the gateway (GW) and the k-th UT. We
adopt the line-of-sight channel model described in [2].

We assume that perfect channel state information is avail-
able at the GW. The GW performs user scheduling and
serves the K users in B groups. The B simultaneous data
frames transport content from more than one UT, leading to
a multigroup multicast transmission. We denote as B; for
i =1,..., B the set of groups. We assume that B; N B; = ()
fori# jandU,_, pBi=K.

Each UT is interested in a certain content (e.g. film, televi-

sion show,...). The set of contents is denotedby C = 1,...,C.
Vectors ¢, € RE*! for k = 1,..., K represent the k-th
UT content requests: if the i-th content (: = 1,...,C) is

requested by the k-th UT, then [ci|, = 1 or O otherwise. In
order to exploit the multicast capabilities of the satellite trans-
mission, it is convenient that users requesting the same con-
tent are grouped over the same transmission.

In this preliminary study, we consider that over each data
frame it is possible to encapsulate all content devoted to the
cluster. Assuming a finite length frame error correction (FEC)
formats involves solving a high complex problem where dif-
ferent FEC options shall be tested considering the content
lengths. This study is beyond the scope of the current paper
and it is left for further works.

It is important to remark that in this paper we consider
a beam-free satellite architecture. In contrast to current sys-
tems where the satellite payload radiates fixed beams and each
beam has its own dedicated network manager (i.e. sched-
uler), in here we assume an holistic scheduling entity able to
group UTs from adjacent beams into the same transmission.
This approach is aligned with future trends in high throughput
satellites [13].

The B simultaneous data streams are precoded using
the minimum mean square error multicast (MMSE-M) tech-
nique [10]. While having significantly lower computational
complexity than other approaches [6], the sum-rate per-
formance of the MMSE-M is generally good for diverse
multibeam satellite systems. We adopt per-feed power al-
location to ensure that none of the satellite high power
amplifiers reach the saturation. Then, the precoded sig-

nal is given by x = Ws = v (GG + %IB)_lGHs,
where matrix W = (wy,wa,...,wg) € CN*B is the
precoding matrix and s € CPZ*! are the data symbols

transmitted to the B UTs groups. The data symbols are
assumed to have unit power, i.e., E (ssH ) = Ig. Ma-

trix G = (g1,82,....88) € CB*N is constructed by
gi = |Bil1',| > kes, Dk, which is the centroid of the channel

vectors of the UTs served in the same group. The scalar + is
set such that the transmit power at each feed power amplifier
is bellow P: 7% = P/ max,, [WW?] o
The overall receive signal model is y = Hx + n, where
n € CK*! is the additive white Gaussian noise with zero
mean and unit variance. Hence, the signal-to-interference-
plus noise ratio (SINR) experience at each UT is SINR;, =
[ht wi)?
S w241

2.2. User Grouping Problem

In general, typical satellite transmissions require that data
from more than one UT is embedded into one frame. This
means that the GW has to partition the set of users () to
be served into B disjoint groups. Bearing in mind the user
grouping considering both the precoding and the content de-
livery tasks, we propose to optimize the following weighted
sum-rate problem

B
. min By log,(1 + SINRy), (1
;n min By logy (1 + SINRy), (1)

maximize
{B:}E,

where
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Note that n; describes the multicast efficiency of the ¢-th clus-
ter. Indeed, n; becomes 1 if all UTs belonging to the i-th
group request the same content. Furthermore, it can be ob-
served in the optimization problem in (1) that the attainable
rate of each of the groups is given by the achievable rate of
the user with the lowest SINR of that group. This is due to the
multicast transmission: all UTs belonging to the same group
have to be able to decode the transmitted frame.

Even though we fix the number of clusters, B, finding
the optimal solution of the problem in (1) requires an exhaus-
tive search over all possible ;. Let us clarify why clustering
techniques are an adequate heuristic approach for solving the
optimization problem in (1). First, if we only consider the
maximization multicast efficiency such as

B

maximize Mis 3)
B}, ; '

it is clear that the optimal solution is the one that provides
a user grouping where each member of the group has the
most similar content requests ¢, k = 1,..., K. From the
clustering perspective, this yields to user grouping that mini-
mizes the intracluster distances [15]. Consequently, a cluster-
ing technique considering the content requests is an adequate
approach for optimizing the problem in (3).

Second, if we consider the optimization problem with
only the sum-rate

B
i 4
; min Byy log(1+SINR), — (4)

maximize
{B:}E,

performing a user clustering considering the channel vectors
h, k=1,..., K and the Euclidean distance between them
is a convenient heuristic approach. In particular, if spectral
clustering is performed the operation approximately solves
the partioning RatioCut problem [12]. This optimization
problem yields to a clustering solution {B}}2, with low

B .
2ozt Zomomeps Bm —hy[[? and high 37 o [[hy —hy||?
fort=1,...,B.



In this context, the resulting matrix GHG, being G con-
structed by the centroids of the clusters, will be likely a di-
agonally dominant matrix due to the clustering operation. In-
tuitively, this supports the precoding operation as it leverages
the inter-cluster interference and promotes a low dissimilarity
of the user-cluster channel vector constructed by the average
of channel vectors of users belonging to the same cluster. In
light of the above discussion, we claim that clustering users
with similar channel vectors (in the Euclidean distance sense)
might increase the resulting sum-rate. The shown numerical
results evidence this notion.

Clearly, applying clustering techniques to heuristically
and approximately solve the optimization problems in (3)
and (4) would lead to different clustering solutions. In this
paper, we tackle the combined problem in (1) by resorting to
multigraph spectral clustering techniques.

3. MULTIGRAPH SPECTRAL CLUSTERING

In order to devise the existing clusters in a graph by means
of spectral clustering, the main tool is the Laplacian matrix,
which can be described as

L=S-M, &)

—dy;
where [S];; = e2” is the similarity matrix for an arbitrary
v and M is the degree matrix defined as a diagonal matrix
whose entries are the UTs degrees mj,..., mx such that
m; = Zf:l Sij-

The value of d;; shall be the distance between the UTs.
For the considered case, a relevant measurement of distance
between UTs whenever precoding is going to be implemented
is the Euclidean distance of the UT channel vectors: dg?a““el =

|h; —h;||%. In fact each cluster is represented by the centroid
gi, which presents minimum quadratic distance to any of the
channel vectors within a cluster. As stated above, in order
to foster the multicast operation we can opt to group users
considering their file requests. This is done by reconsidering
the distance such that d§"" = [|c; — c;|?

In this Section we introduce two techniques able to deal
with the optimization problem in (1). This clustering problem
shall consider two views; namely, the UT channel vectors and
the content demands. Thus, the techniques rely on both chan-
nel vector similarity matrix, S, and the content request one,
Sy. Analogously, we refer to L. and L ¢ as the Laplacian ma-
trices of both the channel vectors feature and content request
one.

We consider two different methods. While the first one
relies on the combination of the different similarity matrices,
the latter focuses on obtaining a consensus eigendecomposi-
tion of the different Laplacian matrices.

3.1. Similarity Matrix Combination

One alternative to consider multiple views of the same graph
is to construct an equivalent similarity matrix that encom-
passes the characteristics of the different views. This tech-
nique is generally known as kernel composition and it has

been successfully applied in many applications of kernel-
based unsupervised learning [16].

In this paper we consider the next kernel compositions;
namely, the kernel product Sp;o¢ = S 0 Sy, where o denotes
the Hadamard product; and the kernel sum, Sgum = S + Sy.
Remarkably, despite its low computational complexity, the
kernel sum is known to offer very good performances for
certain problems such as text clustering [17]. On the other
hand, the kernel product is equivalent to feature concatena-
tion. That is, it is equivalent to perform the clustering with
the vector t = (cT, h7)" when considering the same v for
all views [18]. Once the equivalent similarity matrix is ob-
tained, spectral clustering can be performed.

3.2. Common Indication Matrix

Another approach to clustering a multiview graph is the use
of a regularized eigendecomposition [18]. Bearing in mind
that the spectral clustering process is based on the eigende-
composition of the Laplacian matrix, we aim to construct a
decomposition that simultaneously decomposes both L. and
L. This can be done by optimizing

m%)gl\rflize Tr (VCTLCVC) + Tr (V?Lfo)

+ BTr (V. VIV,VT) ©)
subject to
VIV, =LViV;=1L

As it can be observed, the term STr (VCVszV}j is

employed to foster the similarity between V. and V. In
other words, it promotes the clustering agreement among the
files and the channel vectors domain. This method is coined
as common indication matrix.

The optimization problem in (6) is a coupled non-convex
problem which can be solved via an alternating optimization
procedure. Once the alternating optimization has converged,
the system designer has to choose to use either V¢ or V..
No big differences are expected as the optimization problem
closely related them.

Another interesting approach is to consider the optimiza-
tion in (6) over a common solution [18]. This can be done
by using a consensus variable as the non-convex optimiza-
tion problem in (7). Again, the optimization problem is a
non-convex coupled problem but an alternating optimization
approach can provide relevant value solutions. Remarkably,
both 3. and 8¢ can balance the different views and promote
one view among other.This method is coined as common con-
sensus indication matrix.

rg?grfr}gf Tr (VELVe) + Tr (V7L Vy)

+ B.Tr (VoVIVLVE) + BTr (ViVEV, V) e
subject to
VIV.=LViV;=LV]V,=L



4. NUMERICAL RESULTS

We now demonstrate the benefits of our proposed method in
multibeam satellite systems. For our simulations, we adopt
the geostationary satellite channel model described in Section
II. We consider P = 55 Watts, Gr = 42.2 dBi and By, = 500
MHz. The satellite operates at 20 GHz. The values of ag,
have been obtained from a simulated real satellite array fed
reflector. The d}, values are also obtained for a certain satellite
and UT location. All contents are assumed to have the same
probability of request (1/C). All simulated values have been
obtained considering 1000 Monte Carlo runs.

Fig. 1. One realization considering K = 21 and C' = 5. Each
beam is depicted by a different color and the vertex are plotted
when the distance is larger than 10~%. In a) the graph of the
channel vectors is presented while in b) it is shown the graph
of content demands.

We first show two graph examples in Figure 1 considering
both the channel vectors (a) and the content demands (b). The
vertex connectivity is depicted whenever its weight is larger
than 10~*. Along with the graph representation we have in-
cluded the corresponding beampattern obtained as mentioned
before. In this example we assumed K = 21 and C = 5. It
can be observed that the channel vector graph tends to have a
large connectivity between UTs that belong to close beams
while the content does not follow this rule and it presents
connection between UTs that are geographically separated.
Clearly, both clustering techniques might lead to different so-
lutions and; thus, our proposed multigraph approach results
of great interest in this scenario.

To illustrate the performance of our proposed methods,
Figure 2 shows the network efficiency (i.e. the objective func-
tion of the optimization problem in (1)) considering different
values of B for N = 10, K = 300 and C' = 50. The common
indication matrix method has used a value of 5 = 0.5. This
value has shown the best performance for this setting.

The common indication matrix is the technique that yields
the highest network efficiency for this setting. On the con-
trary, whenever the user clustering only considers the content
requests (green line), it results to a very inefficient perfor-
mance. It is important to remark that the similarity matrix
sum technique, despite of its low complexity, offers a large
weighted sum-rate. Whenever only S, is considered, the net-
work efficiency values are notably high.

As a benchmark, we also included the performance of k-
means algorithm applied to the feature concatenation vector,
t, for each UT. As it is depicted in Figure 2, the performance
of this method is substantially lower compared to the other
techniques based on spectral clustering.

We now evaluate the performance of the common consen-

Fig. 2. Multigraph spectral clustering for different number of
groups and 300 UTs with C' = 50 contents.

‘M.Axun Ttamed at 3, = 04 and 7, = 08

Fig. 3. Performance of consensus common matrix indicator
(V) for0 < 8y <1and 0 < B, < 1. It has been considered
300 UTs with C' = 50 contents.

sus indication matrix technique of the optimization problem
in (7) for different values of 5 and 3. when considering the
same setting as before and with B = 8. We can observe in
Figure 3, high values of 3; (i.e. the consensus solution is
closer to the only-content clustering), the network efficiency
performance decreases severely. In other words, the relations
of the UTs channel vectors are more relevant than the con-
tent ones for this particular example. The optimal tuple is
B¢ = 0.4 and 8. = 0.8 which leads to a reduced performance
gain with respect to the common matrix indicator of the opti-
mization problem in (6) (i.e. a 1 % by comparing the results
for B = 8 in Figure 2 and the optimal tuple weighted sum-
rate in Figure 3) gain. This is indicated by an arrow in Figure
3.

5. CONCLUDING REMARKS

We presented two algorithms to group users in a multibeam
content delivery satellite network with multicast precoding.
To do so, we have used the multigraph spectral clustering
framework that resulted to properly model the different con-
nections of the problem. The two proposed techniques be-
haved well in the synthetic data examples. In light of the
results, it might be interesting to study other multigraph clus-
tering capabilities such as the case of UTs with different de-
tection capabilities (e.g. single user detection or multiple user
detection). This can be useful for non-orthogonal multiple
access applications.
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