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ABSTRACT

In this paper, we propose a new convolutional layer called
Depthwise-STFT Separable layer that can serve as an alterna-
tive to the standard depthwise separable convolutional layer.
The construction of the proposed layer is inspired by the fact
that the Fourier coefficients can accurately represent impor-
tant features such as edges in an image. It utilizes the Fourier
coefficients computed (channelwise) in the 2D local neigh-
borhood (e.g., 3 × 3) of each position of the input map to
obtain the feature maps. The Fourier coefficients are com-
puted using 2D Short Term Fourier Transform (STFT) at mul-
tiple fixed low frequency points in the 2D local neighborhood
at each position. These feature maps at different frequency
points are then linearly combined using trainable pointwise
(1×1) convolutions. We show that the proposed layer outper-
forms the standard depthwise separable layer based models on
the CIFAR-10 and CIFAR-100 image classification datasets
with reduced space-time complexity.

Index Terms— Convolutional neural networks, Short
Term Fourier Transform, Separable convolutions

1. INTRODUCTION

Over the past few years, with the availability of large-scale
datasets and computational power, deep learning has achieved
impressive results on a wide range of applications in the field
of computer vision. In general, the trend is to achieve higher
performance by developing deep and complex models us-
ing large computational resources [1, 2, 3, 4, 5]. However,
this progress is not necessarily making the networks more
efficient with respect to memory and speed. In many real
world and resource constraint applications such as robotics,
satellites, and self-driving cars, the recognition tasks need to
be carried out in a fast and computationally efficient manner.
Therefore, there is a need to develop space-time efficient
models for such applications.

In a standard convolutional layer, the convolution filters
learn the spatial and channel correlations simultaneously. The
depthwise separable convolutions factorize the above process
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Fig. 1: Various convolutional layer architectures. Standard
convolution (left), Depthwise separable convolution (center),
Depthwise-STFT based separable convolution (right).

into two layers. In the first layer, a standard depthwise (chan-
nelwise) convolution is applied in order to learn the spatial
correlations. In the second layer, pointwise convolutions (1×
1 convolutions) learn channel correlations by combining the
outputs of the first layer. Fig. 1, compares various architec-
tures. An important advantage of this factorization is that it
significantly reduces the computation and model size. For
example, for a filter of size n = 3, the depthwise separable
convolution uses 8 to 9 times lesser parameters compared to
the standard convolutional layer.

In this paper, we propose a new 2D convolutional layer
named Depthwise-STFT separable layer. Similar to the stan-
dard depthwise separable convolution layer, our Depthwise-
STFT separable layer has two sub-layers. The first layer
named Depthwise-STFT captures the spatial correlations.
For each channel in the input feature map, it computes the
Fourier coefficients (at low frequency points) in a 2D local
neighborhood (n × n) at each position of the channel to ob-
tain new feature maps. The Fourier coefficients are computed
using 2D Short Term Fourier Transform (STFT) at multiple
fixed low frequency points in the 2D local neighborhood at
each position of the channel. The second layer named point-
wise convolution uses 1 × 1 convolutions to learn channel
correlations by combining feature maps obtained from the
Depthwise-STFT layer. Note that unlike the case of standard
depthwise separable layer, here only the second layer (point-
wise convolutions) is trainable. Thus, the Depthwise-STFT
separable layer has a lower space-time complexity when com-
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pared to the depthwise separable convolutions. Furthermore,
we show experimentally that the proposed layer achieves
better performance compared to the many state-of-the-art
depthwise separable based models such as MobileNet [6, 7]
and ShuffleNet [8, 9].

2. RELATED WORKS

Recently, there has been a growing interest into develop-
ing space-time efficient neural networks for real time and
resource restricted applications [10, 6, 7, 9, 8, 11, 12].
Depthwise Separable Convolutions. As discussed in Sec-
tion 1, depthwise separable convolutions significantly reduce
the space-time complexity of convolutional neural networks
(CNNs) when compared to the standard convolutions by
partitioning the steps of learning spatial and channel corre-
lations. Recently, many depthwise separable convolutions
based networks have been introduced such as MobileNet
[6, 7], ShuffleNet [8, 9], and Xception [13]. Note that with
the reduced complexity in the network architectures, these
networks achieve trade-off between accuracy and space-time
complexity.
2D STFT based Convolutional Layers. Recently, in [14],
the authors introduced a 2D STFT based 2D convolutional
layer named ReLPU for fundus image segmentation. The
ReLPU layer when used inplace of the first convolutional
layer (following the input layer) of the U-Net architecture
[15] improved the performance of the baseline U-Net archi-
tecture. However, the ReLPU layer could not be used to
replace all the convolutional layers in the network due to the
extreme bottleneck used in it which reduced its learning ca-
pabilities. This work aims to solve this issue by introducing
2D STFT in depthwise separable convolutions.

3. METHOD

We will denote the feature map output by a layer in a 2D CNN
network with the tensor f(x) ∈ Rc×h×w where h, w, and c
are the height, width, and number of channels of the feature
map, respectively. Fig. 1 presents the high-level architecture
of our Depthwise-STFT based separable layer. Note that sim-
ilar to the standard depthwise separable convolution layer, the
Depthwise-STFT based separable layer has two sub-layers.
In the first layer (named Depthwise-STFT), for each channel
in the input feature map, we compute the Fourier coefficients
in a 2D local neighborhood at each position of the channel
to obtain the new feature maps. The Fourier coefficients are
computed using 2D Short Term Fourier Transform (STFT)
at multiple fixed low frequency points in the 2D local neigh-
borhood at each position of the channel. The second layer
(named pointwise convolutions) uses 1 × 1 convolutions to
learn linear combinations of the feature maps obtained from
the Depthwise-STFT layer. The detailed description of each

layer is as follows.

Depthwise-STFT. This layer takes a feature map f(x) ∈
Rc×h×w as input from the previous layer. For simplicity, let
us take c = 1. Hence, we can drop the channel dimension
and rewrite the size of f(x) as h × w. Here, x ∈ Z2 are the
2D coordinates of the elements in f(x).

Next, each x in f(x) has a n × n 2D neighborhood (de-
noted by Nx) which can be defined as shown in Equation 1.

Nx = {y ∈ Z2 ; ‖ (x−y) ‖∞≤ r ;n = 2r+1; r ∈ Z+} (1)

Now, for all positions x = {x1, x2, . . . , xh×w} of the feature
map f(x), we use local 2D neighborhoods, f(x − y),∀y ∈
Nx to derive the local frequency domain representation. For
this, we use Short Term Fourier Transform (STFT) which is
defined in Equation 2.

F (v, x) =
∑

yi∈Nx

f(x− yi) exp
−j2πvT yi (2)

Here i = 1, . . . , n2, v ∈ R2 is a 2D frequency variable and
j =

√
−1. Note that, due to the separability of the basis

functions, 2D STFT can be efficiently computed using simple
1D convolutions for the rows and the columns, successively.
Using vector notation, we can rewrite Equation 2 as shown in
Equation 3.

F (v, x) = wTv fx (3)

Here, wv is a complex valued basis function (at frequency
variable v) of a linear transformation and is defined as shown
in Equation 4.

wTv = [exp−j2πvT y1 , exp−j2πvT y2 , . . . , exp−j2πvT yn2 ] (4)

fx is a vector containing all the elements from the neighbor-
hood Nx and is defined as shown in Equation 5.

fx = [f(x− y1), f(x− y2), . . . , f(x− yn2)]T (5)

In this work, we use four lowest non-zero frequency variables
v1 = [a, 0]T , v2 = [0, a]T , v3 = [a, a]T , and v4 = [a,−a]T ,
where a = 1/n. Thus, from Equation 3, we can define the
local frequency domain representation for the above four fre-
quency variables as shown in Equation 6.

Fx = [F (v1, x), F (v2, x), F (v3, x), F (v4, x)]T (6)

At each position x, after separating the real and the imagi-
nary parts of each component, we obtain a vector as shown in
Equation 7.

Fx = [<{F (v1, x)},={F (v1, x)}, . . .
. . . ,<{F (v4, x)},={F (v4, x)}]T (7)
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Fig. 2: Visualization of the Depthwise-STFT Separable layer for c = 1 and n = 7. Here, weights w1, w2, . . . , w8 are learned
by the network during training.

Here, <{·} and ={·} return the real and imaginary parts of
a complex number, respectively. The corresponding 8 × n2
transformation matrix can be written as shown in Equation 8.

W = [<{wv1},={wv1}, . . . ,<{wv4},={wv4}]T (8)

Hence, from Equations 3 and 8, the vector form of STFT for
all the four frequency points v1, v2, v3, and v4 can be written
as shown in Equation 9.

Fx = Wfx (9)

Since Fx is computed for all positions x of the input f(x),
it results in an output feature map with size 8 × h × w cor-
responding to the four frequency variables. Remember that
we took c = 1. Thus, for one channel, the Depthwise-STFT
layer outputs a feature map of size 8 × h × w corresponding
to the four frequency variables. Therefore, for c channels, the
Depthwise-STFT will output a feature map of size 8·c×h×w.
Pointwise convolutions. This layer is the standard trainable
1×1 convolutional layer containing f filters, each one of them
has a depth equal to 8 · c which takes as input a tensor of size
8 · c × h × w and outputs a tensor of size f × h × w. Note
that it is this layer that gets learned during the training phase
of the CNN.

In Fig. 2, we present the visualization of the Depthwise-
STFT based separable layer for c = 1 and n = 7. First the
Fourier coefficients of the input feature map is extracted in a
local 7 × 7 neighborhood of each position at four frequency
points [1/7, 0]T , [0, 1/7]T , [1/7, 1/7]T , and [1/7,−1/7] to
output the feature maps of size 8 · c× h×w (after separating
real and imaginary parts). Then, the output feature maps are
linearly combined to output the final feature map.
Parameter analysis. Consider a standard 2D convolutional
layer with c input and f output channels. Assume that spa-
tial padding is done such that the spatial dimensions of the
channels remain same. Let n × n be the size of the filters.
In Table 1, we compare the number of trainable parameters
in various convolutional layers. The number of trainable pa-
rameters in Depthwise-STFT separable layer is independent
of the filter size n.

4. EXPERIMENTS

Datasets. We evaluate the Depthwise-STFT separable layer
on the two popular CIFAR datasets− CIFAR-10 and CIFAR-

Layer # parameters

Standard Convolution c · n2 · f
Depthwise Separable n2 · c+ c · f
Depthwise-STFT Separable 8 · c · f

Table 1: Comparison of the number of trainable parameters
in various convolutional layers.

100 [16]. The CIFAR-10 and the CIFAR-100 datasets consist
of 10 and 100 classes, respectively. Each dataset consists of
natural RGB images of resolution 32× 32 pixels with 50,000
images in the training set and 10,000 images in the testing set.
We use the standard data augmentation scheme − horizontal
flip/shifting/rotation (±20) that is widely used for these two
datasets. For preprocessing, we normalize the data using the
channel means and standard deviations.
Network Architecture. We adopt a simple Inception-ResNet
style bottleneck architecture [5]. Fig. 3 presents the building
blocks of our network, Block 1 (Fig. 3a) and Block 2 (Fig. 3b).
Block 1 takes as input a feature map with c channels and ap-
plies a bottleneck 1 × 1 convolution (trainable) to output a
feature map of size b such that b < c. This is followed by in-
ception style non-trainable Depthwise-STFT layers with filter
size 3 and 5. The intuition behind this design is to have a max-
imum number of possible pathways for information to flow
through the network and let the network selectively choose
the best frequency points/neighborhood sizes for computing
local Fourier transform and to selectively give more weight
to them during training. The outputs from the Depthwise-
STFT layers are concatenated channel-wise and finally passed
through an expansion 1 × 1 convolution (trainable) to output
a feature map of size f such that f > b. We use bottleneck
architectures as they have been proved to be generalize better
[7]. The architecture of Block 2 is just a slightly augmented
version of Block 1 with skip connections (Fig. 3b). Each block
is followed by a batch normalization layer which is followed
by a LeakyReLU (with α = 0.3) activation function [17].
For down-sampling, we use max pooling with pool size 2 and
stride 2. Our final network as shown in Fig. 3c consists of 16
non-downsampling blocks (Block 1 and Block 2), followed
by a global average pooling layer connected to a final classi-
fication layer with softmax activation. We implemented the
proposed network using Keras deep learning library [18] and
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Fig. 3: Various building blocks of the proposed network architecture and our proposed network

Network # params # feat. CIFAR-10 CIFAR-100

ShuffleNet [9] 1.05M 800 90.80 70.06
ShuffleNet-V2 [8] 1.35M 1024 91.42 69.51
MobileNet [6] 3.31M 1024 91.87 65.98
MobileNet-V2 [7] 2.36M 1280 93.14 68.08
ReLPU based [14] 3.08M 256 92.20 70.20

Ours (b=8, f=128) 0.90M 128 93.16 70.19
Ours (b=16, f=128) 1.30M 128 93.59 70.66
Ours (b=32, f=128) 2.21M 128 93.72 71.08
Ours (b=64, f=128) 3.69M 128 94.07 71.42

Ours (b=64, f=256) 8.21M 256 94.25 73.01
Ours (b=64, f=384) 14.06M 384 94.51 74.39

Table 2: Performance results of the Depthwise-STFT separa-
ble layer based architectures compared to the standard depth-
wise separable layer based architectures.

performed all the experiments on a system with Intel i7-8700
processor, 32 Gb RAM, and a single Nvidia Titan Xp GPU.
Training. For training out networks, we use Adam optimizer
[19], categorical cross-entropy as loss function, and batch size
of 64. All the trainable weights are initialized with orthogonal
initializer [20]. We train our networks with a learning rate of
0.01 for 300 epochs. After that, we increase the batch size
to 128 and further train the networks for 100 epochs. Note
that the above training method is inspired from [21] which
proposes that it is preferable to increase the batch size instead
of decreasing the learning rate during training.
Results and Analysis. Table 2 reports the classification
results of different resource efficient architectures on the

CIFAR-10 and CIFAR-100 datasets. For fair comparison, we
compare our networks with depthwise separable based archi-
tectures only such as MobileNet [6, 7] and ShuffleNet [8, 9].
As discussed in Section 2, we also compare with the ReLPU
layer [14] based network which is form by replacing all the
layers of the network of Fig. 3c with ReLPU layer. Our results
show that the proposed layer outperforms the depthwise sep-
arable layer based and the ReLPU layer based architectures.
Note that here our target is not to achieve state-of-the-art
accuracy on the two datasets but to showcase the efficiency
of our proposed layer when compared to the depthwise sepa-
rable convolution based architectures. For analysis purpose,
we ran two variants of the proposed network (Fig. 3c). In the
first variant, the bottleneck parameter b is increased while the
expansion parameter f is kept constant. In the second variant,
we kept the bottleneck parameter b constant while increasing
the expansion parameter f . In both the settings, we observe
improvement in the performance of the networks.

5. CONCLUSION

This paper proposes Depthwise-STFT separable layer, that
can serve as an alternative to the standard depthwise sepa-
rable layer. The proposed layer captures spatial correlations
(channelwise) in the feature maps using STFT followed by
pointwise convolutions to channel correlations. Our proposed
layer outperforms the standard depthwise separable layer
based models on the CIFAR-10 and CIFAR-100 datasets.
Furthermore, it has lower space-time complexity when com-
pared to standard depthwise separable layer.
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