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ABSTRACT

Sound event detection (SED) and acoustic scene classifica-

tion (ASC) are major tasks in environmental sound analysis.

Considering that sound events and scenes are closely related

to each other, some works have addressed joint analyses of

sound events and acoustic scenes based on multitask learning

(MTL), in which the knowledge of sound events and scenes

can help in estimating them mutually. The conventional

MTL-based methods utilize one-hot scene labels to train the

relationship between sound events and scenes; thus, the con-

ventional methods cannot model the extent to which sound

events and scenes are related. However, in the real environ-

ment, common sound events may occur in some acoustic

scenes; on the other hand, some sound events occur only in a

limited acoustic scene. In this paper, we thus propose a new

method for SED based on MTL of SED and ASC using the

soft labels of acoustic scenes, which enable us to model the

extent to which sound events and scenes are related. Exper-

iments conducted using TUT Sound Events 2016/2017 and

TUT Acoustic Scenes 2016 datasets show that the proposed

method improves the SED performance by 3.80% in F-score

compared with conventional MTL-based SED.

Index Terms— Sound event detection, multitask learn-

ing, teacher–student learning, acoustic scene classification

1. INTRODUCTION

Environmental sound analysis has great potential for devel-

oping many applications such as monitoring systems [1], ab-

normal sound detection systems [2,3], automatic surveillance

[4–6], and media retrieval [7]. For environmental sound anal-

ysis, sound event detection (SED) and acoustic scene classi-

fication (ASC) have mainly been studied. SED involves de-

tecting sound event labels and their onset/offset in an audio

recording, where a sound event indicates a type of sound such

as “mouse clicking,” “people talking,” or “bird singing.” ASC

involves predicting acoustic scene labels in an audio record-

ing, where an acoustic scene indicates a recording situation,

place, or human activity such as “office,” “train,” or “cook-

ing.”

In particular, many SED methods based on the Gaussian

∗These authors contributed equally to this work.

mixture model (GMM) [8] and hidden Markov model (HMM)

[9] have been proposed. However, these approaches cannot

detect multiple overlapping sound events; thus, polyphonic

SED systems have also been developed. One approach to

polyphonic SED is the use of non-negative matrix factoriza-

tion (NMF) [10]. More recently, polyphonic SED systems

based on neural networks have also been developed [11–13].

For example, Hershey et al. have proposed an event detection

method based on a convolutional neural network (CNN) [11].

Çakır et al. [12] and Hayashi et al. [13] have proposed meth-

ods utilizing a recurrent neural network (RNN) or a convolu-

tional recurrent neural network (CRNN), which can capture

temporal information of sound events.

Sound events and scenes are related to each other; for in-

stance, in an acoustic scene “office,” the sound events “mouse

clicking,” and “keyboard typing” tend to occur, whereas the

sound events “large vehicle” and “bird singing” are not likely

to occur. Thus, when analyzing the sound events “mouse

clicking” and “keyboard typing,” information on the acoustic

scene “office” will help in detecting these sound events, and

vice versa. On the basis of this idea, Mesaros et al. [14] and

Heittola et al. [15] have proposed the SED method utilizing

information on acoustic scenes in an unsupervised manner,

and Imoto and coworkers [16, 17] have proposed ASC tak-

ing information on sound events into account, which is based

on Bayesian generative models. Bear et al. [18] and Tonami

et al. [19] have proposed joint analyzing methods of sound

events and scenes based on multitask learning (MTL) of SED

and ASC, in which one-hot scene labels is used to train the

models.

In the real environment, common sound events may occur

in some acoustic scenes, for example, in the acoustic scenes

“residential area” and “city center,” the common sound events

“car” may occur. On the other hand, some sound events oc-

cur only in a limited acoustic scene, for example, the sound

event “dishes” occurs in the acoustic scene “home” in most

cases. This indicates that there is the extent to which sound

events and scenes are related. However, the conventional

MTL-based methods cannot consider the extent of the rel-

evance because the methods utilize one-hot scene labels to

train the models. To overcome this problem, we propose a

http://arxiv.org/abs/2002.05848v1


Table 1. Sound events occurring in each acoustic scene in TUT Acoustic Scenes 2016 [23] and 2017 [24]
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new MTL-based SED method with soft scene labels, which

is obtained using the teacher–student learning framework.

2. CONVENTIONAL METHODS

2.1. Conventional Methods for Event Detection and

Scene Classification

In this section, we introduce the conventional SED and ASC

methods. Recently, many neural network-based methods,

such as convolutional neural network (CNN)-based meth-

ods [11, 20] and a recurrent neural network (RNN)-based

method [13], have been proposed. For an example in CNN-

based SED and ASC, the time-frequency representation of the

observed signal V ∈ R
D×N , such as log-mel-band energy, is

fed to a convolutional layer, where D and N are the number

of frequency bins and the number of time frames of the input

feature, respectively. In the convolution layer, the input fea-

ture map is convoluted with two-dimensional filters, then max

pooling is conducted to reduce the dimension of the feature

map. The CNN architecture allows robust feature extraction

against time and frequency shifts, which frequently occur in

environmental sounds. The output of the convolution layer is

then input to the fully connected layer, which is followed by

the sigmoid function for SED or softmax function for ASC.

SED involves the estimation of sound event labels and

their onset/offset times, where acoustic events may overlap

in the time axis. Thus, the network for SED is optimized

under the following sigmoid cross-entropy objective function

E1(Θ1):

E1(Θ1) = −

N
∑

n=1

{

zn log
(

s(yn)
)

+(1− zn) log
(

1− s(yn)
)}

= −

M
∑

m=1

N
∑

n=1

{

zm,n log
(

s(ym,n)
)

+ (1− zm,n) log
(

1− s(ym,n)
)

}

, (1)

where s, M , ym,n, and zm,n are, respectively, the sigmoid

function, the number of the acoustic event category, the output

of the fully connected layer in time frame n, and the target

label in time frame n, which is 1 if acoustic event m is active

in time frame n, and 0 otherwise.

On the other hand, ASC involves the estimation of the

acoustic scene label with which a sound clip is most associ-

ated. The network for ASC is optimized under the following

softmax cross-entropy objective function E2(Θ2):

E2(Θ2) = −

C
∑

c=1

{

zc log
(

σ(yc)
)

}

, (2)

where σ, C, yc, and zc are the softmax function, the number

of acoustic scene categories, the output of the fully connected

layer, and the hard scene label, respectively.

2.2. Joint Analysis of Sound Events and Scenes Based on

Multitask Learning

Most works address SED and ASC separately. However,

some sound events and scenes are closely related, and the

knowledge of sound events and scenes can help in estimating

them mutually. Considering this idea, joint analysis of sound

events and acoustic scenes based on MTL of SED and ASC

has been proposed [18, 19]. As shown in Fig. 1, these meth-

ods share parts of the networks holding information on sound

events and scenes in common.

To optimize a multitask-based network, the following ob-

jective function is used in [19]:

E(Θ) = E1(Θ1) + αE2(Θ2), (3)

where α indicates the weight of the scene loss. In particular,

the previous work [19] showed that an MTL-based method

achieves a better performance in detecting sound events than

CRNN-based SED [12].

3. SED BASED ON MULTITASK LEARNING WITH

SCENE SOFT LABELS

3.1. Motivation

As shown in Table 1, common sound events may occur in

some acoustic scenes, for example, in the acoustic scenes

“residential area” and “city center,” the common sound events

“car” and/or “people walking” may occur. On the other hand,

some sound events occur only in a limited acoustic scene, for

example, the sound event “dishes” occurs only in the acoustic

scene “home.” This means that there is the extent to which

sound events and scenes are related. However, the conven-

tional MTL-based method utilizes one-hot (hard) scene labels

to train the relationship between sound events and scenes;

therefore, the conventional method cannot model the extent

to which sound events and scenes are related. To address

this limitation, we propose SED by MTL of sound events and

scenes with soft scene labels obtained by the teacher–student

learning framework.
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Fig. 1. Network structure of conventional MTL-

based method [19]
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Fig. 2. Proposed MTL-based SED with soft scene label

3.2. Proposed Method

An overview of the proposed method is shown in Fig. 2. In

the proposed method, we adopt the teacher–student learning

framework [21,22] to the MTL-based model. In the proposed

scheme, the teacher network for scene classification is first

trained using hard scene labels as in the conventional ASC

method. Then, the output of the trained teacher network is

used as the soft scene label for training the student network.

To optimize parameters related to acoustic scenes in the

student network, the following objective function is used:

qc =
exp(wc/T )

∑C

i=1
exp(wi/T )

, (4)

pc =
exp(vc/T )

∑C

i=1
exp(vi/T )

, (5)

E3(Θ3) = −

C
∑

c=1

(pc logqc), (6)

where w and v are the outputs of fully connected layers of

student and teacher models, respectively. T is the tempera-

ture parameter, which determines the extent of soft-label uti-

lization [21]. In the proposed method, the hard scene loss

E2(Θ2) in Eq. 3 is replaced with E3(Θ3). Thus, the objec-

tive function of the proposed method is finally represented as

E(Θ) = E1(Θ1) + βE3(Θ3), (7)

where β is the weight of the soft scene loss.

4. EVALUATION EXPERIMENTS

4.1. Experimental Conditions

To evaluate the performance of the proposed method for

SED, we conducted event detection experiments. For the

evaluation, we constructed a dataset composed of parts of the

Table 2. Experimental conditions

Structure of teacher network 3 CNN & 1 fully conn.
# channels of CNN layers (shared) 128, 128, 128
Filter size (shared) 3×3
Pooling size (shared) 8×8,4×4,2×2 (max pooling)

Network structure of shared layers 3 CNN
# channels of CNN layers (shared) 128, 128, 128
Filter size (shared) 3×3
Pooling size (shared) 1×8,1×4,1×2 (max pooling)

Network structure of scene layers 2 CNN
# channels of CNN layers (scene) 64, 16
Filter size (scene) 3×3
Pooling size (scene) 10×1,5×1 (max pooling)

Network structure of event layers 1 BiGRU & 1 fully conn.
# units in GRU layer (event) 32
# units in fully conn. layer (event) 32

Table 3. Performance of sound event detection

Method F-score ER

CNN-BiGRU 42.17% 0.756
MTL (α=0.0001) 46.02% 0.724
MTL (α=1.0) 29.26% 0.837
MTL w/ soft labels (β=1.0, T=1.0) 49.82% 0.691

TUT Sound Events 2016 development, 2017 development,

and TUT Acoustic Scenes 2016 development [23, 24]. From

the three datasets, we selected sound clips including four

acoustic scenes, “home,” “residential area,” “city center,” and

“office,” with a total duration of 192 minutes of audio. The

experimental data include the 25 types of sound event listed

in Table 1. Because the original TUT Acoustic Scenes 2016

development dataset does not have sound event annotations

in the office scene, we annotated them using the same proce-

dure as in [23, 24]. The sound event labels of the office scene

annotated for this experiment are available in [25].

As the input of networks, we used the 64-dimensional log

mel-band energy, which has a frame length of 40 ms with

50% overlap. The acoustic features were input into the net-



Table 4. Sound event detection performance for each event

Event
(object) (object) (object) (object) (object) bird brakes

breathing car children cupboard cutlery
banging impact rustling snapping squeaking singing squeaking

CRNN
F-score 0.00% 1.20% 0.16% 0.08% 0.00% 25.14% 3.00% 0.00% 58.72% 0.00% 2.31% 0.47%

Error rate 0.0011 0.0263 0.0247 0.0018 0.0015 0.1022 0.0105 0.0019 0.1469 0.0255 0.0017 0.0040

MTL (α = 0.0001)
F-score 0.00% 2.26% 0.14% 0.08% 0.00% 44.91% 5.95% 0.00% 59.48% 0.00% 0.08% 0.17%

Error rate 0.0011 0.0262 0.0247 0.0018 0.0015 0.0903 0.0104 0.0019 0.1493 0.0255 0.0017 0.0040

MTL (α = 1.0)
F-score 0.00% 0.03% 0.01% 0.00% 0.00% 0.00% 0.59% 0.00% 43.46% 0.00% 0.00% 2.58%

Error rate 0.0011 0.0263 0.0247 0.0018 0.0015 0.1134 0.0106 0.0019 0.1776 0.0255 0.0017 0.0039

MTL w/ soft labels F-score 0.00% 0.53% 0.02% 0.00% 0.00% 43.93% 5.13% 0.00% 58.87% 0.00% 1.12% 0.03%

(β = 1.0, T = 1.0) Error rate 0.0011 0.0263 0.0247 0.0018 0.0015 0.0867 0.0103 0.0019 0.1467 0.0255 0.0017 0.0040

Event dishes drawer fan
glass keyboard large mouse mouse people people washing water tap wind

jingling typing vehicle clicking wheeling talking walking dishes running blowing

CRNN
F-score 0.19% 0.00% 62.18% 0.00% 0.61% 41.69% 0.00% 0.00% 0.05% 46.35% 10.73% 48.27% 0.00%

Error rate 0.0114 0.0018 0.1665 0.0020 0.0248 0.0593 0.0069 0.0024 0.0988 0.1042 0.0244 0.0155 0.0134

MTL (α = 0.0001)
F-score 0.80% 0.00% 60.55% 0.00% 3.91% 39.09% 0.00% 0.00% 1.13% 48.78% 13.51% 44.11% 0.00%

Error rate 0.0114 0.0018 0.1570 0.0020 0.0247 0.0623 0.0069 0.0024 0.0987 0.1019 0.0241 0.0161 0.0134

MTL (α = 1.0)
F-score 0.00% 0.00% 58.12% 0.00% 0.12% 15.23% 0.00% 0.00% 0.00% 5.53% 0.00% 27.83% 0.00%

Error rate 0.0114 0.0018 0.1648 0.0020 0.0248 0.0740 0.0069 0.0024 0.0988 0.1266 0.0247 0.0184 0.0134

MTL w/ soft labels F-score 11.08% 0.00% 74.60% 2.91% 9.47% 42.20% 0.35% 0.00% 0.80% 48.88% 0.62% 46.60% 0.00%

(β = 1.0, T = 1.0) Error rate 0.0112 0.0018 0.1363 0.0019 0.0243 0.0610 0.0068 0.0024 0.0986 0.1034 0.0247 0.0157 0.0134
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Fig. 3. Sound event detection performance with various

weights α or β

works shown in Fig. 2, and active sound events were esti-

mated by thresholding using an adaptive thresholding method

[26]. SED performance was evaluated using the segment-

based F1-score and error rate [27]. Other experimental con-

ditions are listed in Table 2.

4.2. Experimental Results

To obtain the results of each experiment, we trained each

model and evaluated the detection performance with a four-

fold cross-validation setup × 3 initial values of model param-

eters. Table 3 and Fig. 3 show the average performance of

sound event detection using CNN-BiGRU [12] (hereafter re-

ferred to as CRNN), the MTL-based method [19] (hereafter

referred to as MTL), and the proposed MTL-based method

with the soft scene labels (hereafter referred to as MTL w/

soft labels) in terms of F-score and error rate. The results

show that when using the conventional MTL-based method,

the F-score tend to decrease as the parameter α increases.

This means that because the conventional MTL-based method

may not model the relationship between acoustic scenes and

events precisely, a large amount of scene information leads

to performance degradation. On the other hand, the proposed

method (β = 1.0, T = 1.0) improves the F-score of event de-

tection performance by 3.80 percentage points compared with

that of the conventional MTL-based method (α = 0.0001).

Thus, the proposed method can utilize information on acous-

tic scenes for SED more effectively.

To examine the detection results in more detail, we list

the event detection results for each event in Table 4. The re-

sults show that in many of the sound events, the proposed

method achieves a higher F-score and error rate than the con-

ventional methods. For example, the proposed method can

detect the acoustic events “dishes”, “fan,” and “people walk-

ing” more accurately; the F-scores of these sound events in-

crease by 10.28, 14.05, and 0.10 percentage points, respec-

tively, compared with the conventional MTL-based method.

On the other hand, the event detection performance for “(ob-

ject) snapping,” “breathing,” and “wind blowing” are not im-

proved. This may be because these sound events hardly occur

in the recorded sound clips; thus, there is still a class imbal-

ance problem between sound events, which will be addressed

in the future.

5. CONCLUSION

In this paper, we proposed the SED method based on MTL of

SED and ASC with soft scene labels. In the proposed method,

the teacher network for scene classification is first trained us-

ing hard scene labels, and the output of the trained teacher

network is used as the soft scene label for training the stu-

dent MTL-based network. The experimental results obtained

using the TUT Sound Events 2016, 2017, and TUT Acous-

tic Scenes 2016 datasets show that the proposed method out-

performs the conventional MTL-based SED method by 3.80

percentage points in terms of the segment-based F1-score.
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