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PARTICLE GROUP METROPOLIS METHODS FOR TRACKING THE LEAF AREA INDEX
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ABSTRACT

Monte Carlo (MC) algorithms are widely used for Bayesian
inference in statistics, signal processing, and machine learn-
ing. In this work, we introduce an Markov Chain Monte
Carlo (MCMC) technique driven by a particle filter. The
resulting scheme is a generalization of the so-called Parti-
cle Metropolis-Hastings (PMH) method, where a suitable
Markov chain of sets of weighted samples is generated. We
also introduce a marginal version for the goal of jointly infer-
ring dynamic and static variables. The proposed algorithms
outperform the corresponding standard PMH schemes, as
shown by numerical experiments.

Index Terms— Particle MCMC, Particle Filtering, Monte
Carlo, Bayesian inference, state-space models

1. INTRODUCTION

Particle filtering and Markov Chain Monte Carlo (MCMC)
methods are Monte Carlo techniques widely applied in sta-
tistical models, in order to make inference about a dynamic
and static parameters [1, 2, 3, 4]. The particle Metropolis-
Hastings (PMH) algorithm combines the particle filtering
approach with the Metropolis-Hastings (MH) technique, a
well-known MCMC method [5, 6, 4]. The PMH scheme has
been particularly designed for making inference and smooth-
ing about a hidden state in state-space models [7, 8]. In
PMH, two trajectories obtained by different runs of a particle
filter are compared according to suitable MH-type accep-
tance probability. Its marginal version, the so-called Particle
Marginal MH (PMMH) method, has found a vast application
in signal processing for estimating jointly both dynamic and
static parameters [8, 9].

In this work, we introduce a novel MCMC technique
driven by a particle filter (PF), called particle group Metropo-
lis sampling (PGMS). The proposed algorithm yields a
Markov chain of sets of weighted particles. The accep-
tance probabilities and the dynamics of the chain coincide
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exactly with those of the standard PMH scheme. Indeed, a
PMH chain can be recovered by resampling the PGMS out-
puts. Furthermore, we also introduce the marginal version of
PGMS method for the double goal of smoothing trajectories
traced by a dynamic variable and estimating static parameters
of the considered dynamic model. Numerical simulations
show the benefits of the proposed schemes.

2. BACKGROUND

In many applications the goal is to infer a D-dimensional
variable, x = x1:D = [x1 . . . , xD]> 2 X ✓ RD⇥⇠ (where
xd 2 R⇠), given a set of related data, y 2 Rdy . In a Bayesian
setting, the statistical information is summarized in the poste-
rior probability density function (pdf), i.e.,

⇡̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf
and Z ⌘ Z(y) is the marginal likelihood (a.k.a., Bayesian
evidence). Generally, Z is unknown, hence we only assume
that we are able to evaluate ⇡(x) = `(y|x)g(x). Furthermore,
the integrals involving ⇡̄(x) are often analytically intractable.
For instance, one often needs to calculate expected values as

I = E⇡̄[h(X)] =
1
Z

Z

X
h(x)⇡(x)dx, (2)

where h(x) : RD⇥⇠ ! Rdh is an integrable function and
⇡̄(x) = 1

Z ⇡(x). In this work, we compute an estimator bI of I
using an MCMC technique driven by a particle approximation
of measure of ⇡̄(x) obtained by a particle filtering scheme
[3, 2, 4].
Particle Filtering. Let us assume that the target density can
be factorized as

⇡̄(x) / ⇡(x) = �1(x1)
DY

d=2

�d(xd|xd�1). (3)

For instance, this factorization is possible in the state-space
models [2, 7]. Given a proposal pdf factorized in the same
way, i.e., q(x) = q1(x1)

QD
d=2 qd(xd|xd�1), we can draw N



samples from the proposal, x(n) = x(n)
1:D = [x(n)

1 . . . , x(n)
D ]> ⇠

q(x), where x(n)
d ⇠ qd(xd|xd�1), and we assign the impor-

tance weight w(n) = ⇡(x(n))
q(x(n))

. The weight above can be
computed recursively and, in this case, the resulting tech-
nique is called sequential importance sampling (SIS). If a
resampling step is incorporated during the recursion, the
method is known as sequential importance resampling (SIR)
[2, 7]. Table 1 shows a SIR scheme where a resampling step
is performed at each iteration (a.k.a., bootstrap particle filter)
and a proper weighting of a resampled particle is applied
[10, 11, 12]. With a SIR procedure, we obtain a particle
approximation of the measure of the target pdf, i.e.,

b⇡(x|x(1:N)) =
1

N bZ

NX

n=1

w(n)�(x� x(n)),

=
NX

n=1

w̄(n)�(x� x(n)), (4)

where w̄(n) = w(n)
PN

j=1 w(j) and bZ = 1
N

PN
j=1 w(j) is an unbi-

ased estimator of the marginal likelihood. The latter estimator
is valid only if the resampled particles are properly weighted

with ew(n)
d = 1

N

NP
n=1

w(n)
d [10, 11, 12]. Otherwise, an alterna-

tive estimator is bZ =
QD

d=1

h
1
N

PN
n=1 �(n)

d

i
. See Appendix

C in [11] for further details.

St�1 St+1St

Fig. 1: Graphical representation of a Markov chain of set of
weighted particles yielded by PGMS schemes.

3. PARTICLE GROUP METROPOLIS SAMPLING

In this section, we introduce a novel algorithm belonging to
the class of group Metropolis sampling (GMS) methods. The
GMS scheme, introduced in [11], is an MCMC technique
which generalizes the independent multiple try Metropolis (I-
MTM) algorithm [13]. It can be seen as a method which recy-
cles auxiliary weighted samples in an I-MTM scheme. More-
over, the acceptance probability used in GMS is the exten-
sion of the acceptance probability of the acceptance probabil-
ity employed in an independent Metropolis-Hastings (I-MH)
method, considering the concept of proper weighting of a set
of weighted samples [11, 13]. Here, we introduce a novel
GMS technique specifically designed for scenarios when the

Table 1: Bootstrap particle filtering

Initialization: Choose x(n)
0 and set ew(n)

0 = 1
N for n =

1, . . . , N .
For d = 1, . . . ,D:

1. Propagation: Draw x(n)
d ⇠ qd(xd|x(n)

d�1), for n =
1, . . . , N .

2. Weighting: Compute the weights

w(n)
d = ew(n)

d�1�
(n)
d , (5)

where �(n)
d = �d(x(n)

d |x(n)
d�1)

qd(x(n)
d |x(n)

d�1)
, for n = 1, . . . , N .

3. Resampling:

(a) Resample N particles from the current approx-
imation, ex(n)

d ⇠
PN

i=1 w̄(i)
d �(x � x(i)

d ), where

w̄(i)
d = w(i)

dPN
j=1 w(j)

d

and n = 1, . . . , N .

(b) Set x(n)
d = ex(n)

d and ew(n)
d = 1

N

NP
n=1

w(n)
d , for

all n = 1, . . . , N (see [10]).

Return: Set {x(n) = x(n)
1:D, w(n) = w(n)

D }N
n=1, so that

b⇡(x|x(1:N)) =
1

N bZ

NX

n=1

w(n)�(x� x(n)).

target density can be factorized as in Eq. (3). The resulting al-
gorithm, called particle group Metropolis sampling (PGMS)
generalizes the Particle MH (PMH) sampler [8, 9]. Unlike
PMH, the PGMS method produces a Markov chain of sets
of weighted samples, as graphically represented in Figure 1.
The PGMS scheme is summarized in Table 2. The PGMS
method can be interpreted a way to recycle weighted trajec-
tories (drawn in a PMH run) and include them in the final
estimators. For this reason, PGMS outperforms PMH with-
out any additional computational cost. The difference be-
tween PGMS and the PMH method is that PGMS does not
use resampling steps at each iteration for selecting one sam-
ple among the N weighted samples. Indeed, PGMS stores the
entire set, if accepted. Each set contains a group of weighted
trajectories x(n) obtained by a particle filter. If we are inter-
ested in estimating a unique integral I, we can store only the
estimatorbIt =

PN
n=1 w̄(b)h(x(n)) instead of all the particles.

Note that the acceptance probabilities ↵ and the dynam-
ics of PGMS coincides exactly with the PMH steps, so that
the ergodicity of the chain is ensured [8, 9]. Indeed, on could
recover a PMH chain from the PGMS outputs applying T re-



sampling steps i.e.,

ext =

8
>><

>>:

vt ⇠
NX

n=1

⇢̄n,t�(x� xn,t), if St 6= St�1,

ext�1 if St = St�1,

(6)

for t = 1, . . . , T . Namely, {ext}T
t=1 is the chain obtained by

one run of the PMH technique. Figure 2 graphically sum-
marizes this procedure. Moreover, the main difference be-
tween PGMS scheme and the standard GMS method is that
the samples are generated by a particle filter, i.e., in a sequen-
tial way (following the target factorization). Due to the use of
resampling steps during the particle filtering stage, the result-
ing samples are correlated, not independent as in the standard
GMS technique.

Table 2: Particle group Metropolis sampling (PGMS)
Initialization: Start with an initial set S0 =
{xn,0, ⇢n,0}N

n=1 and bZ0 = 1
N

PN
n=1 ⇢n,0.

For t = 1, . . . , T :

1. Construct a particle approximation using a particle
filter (as described in Table 1),

b⇡(x|x(1:N)) =
NX

n=1

w̄(n)�(x� x(n)),

and obtain bZ 0, as described in Section 2.

2. Define the set S 0 = {x(n), w̄(n)}N
n=1.

3. Given St = {xn,t, ⇢̄n,t}, set St = S 0 and bZt = bZ 0,
with probability

↵(St�1,S 0) = min

"
1,

bZ 0

bZt�1

#
. (7)

Otherwise, set St = St�1 and bZt = bZt�1.

Return: {St}T
t=1 and { bZt}T

t=1.

3.1. Marginal version of PGMS

In many applications, static and dynamical parameters must
be jointly estimated. More specifically, let again consider
x = x1:D 2 X ✓ RD⇥⇠ and an additional static parame-
ter ✓ 2 Rd✓ . For instance, in the state-space models, xd 2 R⇠

represents the hidden state (hence, x = x1:D is the hidden
trajectory to be estimated) and ✓ a static unknown parameter
of the model [14, 15, 16, 17, 12]. In this scenario, assuming a
prior pdf g✓(✓) over ✓, the complete posterior pdf is

⇡̄c(x,✓) / ⇡c(x,✓) = g✓(✓)⇡(x|✓), (8)

t

x x x x

St St+1 St+2 St+3

ext

ext+1 ext+2
ext+3

Fig. 2: Graphical representation of the recovery of a PMH chain
by PGMS outputs. Each circle represents a possible trajectory
ext = [ex1,t, ..., exD,t] and the size of the circle represents its weight.
The green lines represent the transition of the recovered PMH chain,
obtaining by resampling at each iteration.

where

⇡(x|✓) = �1(x1|✓)
DY

d=2

�d(xd|x1:d�1,✓). (9)

In order to approximate ⇡̄c(x,✓), we can apply the particle
marginal group Metropolis sampling (PM-GMS) algorithm,
that is summarized in Table 3. PM-GMS draws a candidate
✓0 ⇠ q✓(✓|✓t�1) and then run a particle filter addressing the
target pdf ⇡̄(x|✓0). PM-GMS is a generalization of the parti-
cle marginal MH (PMMH) algorithm, where a chain of set of
(weighted) trajectories and a chain regarding the parameter ✓
are jointly produced.

Table 3: The PM-GMS algorithm

Initialization: Start with ✓0, S0 and bZ(✓0).
For t = 1, . . . , T :

1. Draw ✓0 ⇠ q✓(✓|✓t�1).

2. Run a particle filter to obtain the approximation
b⇡(x|v(1:N),✓0) =

PN
n=1 w̄(n)�(x � v(n)) and the

estimator bZ(✓0).

3. Define the set S 0 = {v(n), w̄(n)}N
n=1.

4. Given St = {xn,t, ⇢̄n,t}, set St = S 0, ✓t = ✓0 and
bZt = bZ(✓0), with probability

↵ = min

"
1,

bZ(✓0)g✓(✓0)q✓(✓t�1|✓0)
bZ(✓t�1)g✓(✓t�1)q✓(✓0|✓t�1)

#
.

Otherwise, set St = St�1, ✓t = ✓t�1 and bZt =
bZ(✓t�1).

Return: The Markov chain {St,✓t, bZt}T
t=1.
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Fig. 3: Smoothing of the trajectory with PGMS (with N = 5, � = 0.1) at different iterations (a) t = 2, (b) t = 10, and (c) t = 100, in one
specific run. The true values, x⇤ = x⇤1:D , are shown dashed lines whereas the estimated trajectory by PGMS, bxt = bx1:D,t, with solid lines.

4. NUMERICAL SIMULATIONS

We consider the challenging problem of estimating biophys-
ical parameters from remote sensing (satellite) observations.
In particular, we focus on the estimation of the leaf area index
(LAI) [18]. Let us denote LAI as xd 2 R+ (where d 2 N+

also represents a temporal index) in a specific region at a lati-
tude of 42� N [19]. Since xt > 0, we consider Gamma prior
pdfs over the evolutions of LAI and Gaussian perturbations
for the “in-situ” received measurements, yt. More specifi-
cally, we assume the following state-space model

(
gd(xd|xd�1) = G

⇣
xd

���xd�1
b , b

⌘
,

`d(yd|xd) = N (yd|xd, �2),
(10)

for d = 2, . . . ,D, with initial probability g1(x1) = G(x1|1, 1),
where b, � > 0 and cd > 0 is a normalizing constant. Note
that the expected value of the Gamma pdf above is xd�1 and
the variance is b.
First Experiment. First of all we consider that all the param-
eters of the model are known. The posterior pdf is

⇡̄(x|y) / `(y|x)g(x)

=

"
DY

d=2

`d(yd|xd)

#" 
DY

d=2

gd(xd|xd�1)

!
g1(x1)

#
,

with x = x1:D 2 RD. For generating the ground-truth (i.e.,
the trajectory x⇤ = x⇤1:D = [x⇤1, . . . , x⇤D]), we simulate the
temporal evolution of LAI in one year (i.e., 1  d  D =
365) by using a double logistic function as employed in [19].
In Figure 3, the true trajectory x1:D is depicted with dashed
lines and the estimation (at different iterations) provided by
PGMS in one specific run, in solid lines. The observations
y = y2:D are then generated each run according to the model
yd ⇠ `d(yd|xd). We compare the standard PMH and PGMS,
setting � = 0.1, N = 40 and T = 200 in terms of estimation
of the true trajectory. We also consider different scale values
b 2 {0.01, 0.05, 0.1, 1}. The results, averaged over 2000
runs, are shown in Table 4. Note that PGMS outperforms the

standard PMH in all cases, providing always a smaller mean
square error (MSE).
Second Experiment. Now we consider that the param-
eter � is also unknown, so that the complete variable of
interest [x, �] 2 RD+1. Then the posterior is ⇡̄(x, �|y) /
`(y|x, �)g(x, �) according to the model Eq. (10), where
g(x, �) = g(x)g�(�) and g�(�) is a uniform pdf in [0.01, 5].
Then we test the standard PMMH and PM-GMS with q�(�) =
g�(�) (see 3.1), for estimating [x⇤, �⇤] where x⇤ = x⇤1:D and
�⇤ = 0.7 are the true values. Table 5 compares the standard
PMMH and PM-GMS for estimating �⇤ (we set N = 40 and
T = 100). We can observe that PM-GMS always outper-
forms the standard PMMH in terms of smaller MSE.

Table 4: MSE in estimating the trajectory x⇤ = x⇤1:D , by PGMS
and standard PMH with N = 40, T = 200, and � = 0.1.

Method Standard PMH PGMS
MSE MSE

b = 0.01 0.0422 0.0380
b = 0.05 0.0130 0.0100
b = 0.1 0.0133 0.0102
b = 1 0.0178 0.0140

Table 5: Comparison among PM-GMS and the standard PMMH
with N = 40 and T = 100, for estimating �⇤ = 0.7.

Method Standard PMMH PM-GMS
MSE MSE

b = 0.01 0.0929 0.0901
b = 0.05 0.0186 0.0097
b = 0.1 0.0401 0.0288
b = 1 0.0223 0.0156

5. CONCLUSIONS
In this work, we present the particle group Metropolis sam-
pling (PGMS) scheme which is an extension of the related
PMH algorithm. PGMS outperforms the corresponding
benchmark Monte Carlo technique without any extra com-
putational cost, as we have shown in the numerical experi-
ments.The PGMS method can be interpreted a suitable way
of recycling particles in a PMH scheme and including them
in the final estimators.
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