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           Abstract 
Traditionally, the performance of non-native mispronunciation 
verification systems relied on effective phone-level labelling of 
non-native corpora. In this study, a multi-view approach is 
proposed to incorporate discriminative feature representations 
which requires less annotation for non-native mispronunciation 
verification of Mandarin. Here, models are jointly learned to 
embed acoustic sequence and multi-source information for 
speech attributes and bottleneck features. Bidirectional LSTM 
embedding models with contrastive losses are used to map 
acoustic sequences and multi-source information into fixed-
dimensional embeddings. The distance between acoustic 
embeddings is taken as the similarity between phones. 
Accordingly, examples of mispronounced phones are expected 
to have a small similarity score with their canonical 
pronunciations. The approach shows improvement over GOP-
based approach by +11.23% and single-view approach by +1.47% 
in diagnostic accuracy for a mispronunciation verification task.  

Index Terms—phone embedding, Siamese networks, 
mispronunciation verification, computer-assisted language 
learning, neural networks 

1. Introduction 
In previous studies, ASR have been a necessary component of 
computer-assisted language learning (CALL) systems to 
automatically assess proficiency of non-native speakers. Witt & 
Young introduced a likelihood-based “Goodness of 
Pronunciation” (GOP) measure [1] considering the likelihood 
of both canonical phone and a set of competing phones by 
human judges. Frame-level Log-posterior probabilities 
produced by an ASR component were averaged in a segment to 
represent confidence scores of each phone, which was a variant 
of GOP scores proposed by [2].  

It is noted that this CALL systems’ performances [1] is 
deeply dependent on the quality of non-native corpora labeling 
at the phone level to train models for phone-level confidence 
scores. Meanwhile, non-native learners’ pronunciation is 
expected to be more native with reduced constraints from their 
primary language (L1) [3]. Non-native learners’ 
mispronunciations always contain “distortion errors” such that 
intermediate states cannot be straightly deemed as phonemic 
substitution [4,5], which causes the complexity for annotators 
to provide ground-truth labels in some cases. 

 Therefore, weak supervision was applied to obtain 
embeddings in the form of discriminative feature 
representations to lift restriction of sparse mispronunciation 
annotation. This weak supervision approach can also be put into 
use in low-resource situations [6,7]. Bengio & Heigold 
employed a convolution neural network to embed word-level 

acoustic information for rescoring a speech recognizer’ outputs 
based on a loss with a combination of ranking criteria and 
classification [8]. Chen et al. employed LSTM networks to 
embed acoustic words for a keyword spotting task [9], using a 
classification loss. Audhkhasi et al. trained auto-encoders for 
acoustic and written words respectively, and developed a 
comparison model on the two perspectives, which was also 
used for a key word search task [10]. Studies on acoustic word 
embeddings have focused on a number of embedding models, 
training approaches and tasks [11,12,13,14,15]. 

Systems noted above only adopt acoustic features as their 
inputs, however, there are other features and patterns which can 
be used to describe acoustic traits at the phone-level. In this 
study, Pronunciation is taken as a term of a sequence of phones 
in an utterance without construction information including the 
choice of syllables and prosody. Our approach is introduced for 
learning acoustic phone embeddings in a multi-view setting, 
which is similar to [16] but applied instead for a word 
discrimination task. Pronunciation dissimilarity between native 
speakers and non-native speakers can be taken as an ideal 
predictor of pronunciation goodness. By applying a multi-view 
scenario, acoustic sequences and multi-source information 
related to pronunciation can be jointly projected into a high-
level representation space, where we can obtain acoustic 
embeddings of phones and use the distance between acoustic 
embeddings to represent pronunciation similarity. Given the 
mismatch between native and non-native speech, it is a very 
strong assumption that all phonetic embedding dissimilarity 
measures are exclusively interpreted as mispronunciations, but 
not phone-level recognition errors due to generic acoustic 
modelling confusion resulting from the mismatch. So it is 
suggested to replace traditional likelihood-based measures with 
embedding-based measures to improve mispronunciation 
verification. Multi-source information includes knowledge-
based speech attributes and data-based bottleneck features, 
which help acoustic embedding models to produce a more 
discriminative representation of acoustic sequences. The 
learned acoustic embeddings are also expected to better 
represent the way phones sound from a perceptual view point. 
Several contrastive losses corresponding to different objectives 
for embedding learning are employed to optimize the distance 
between embeddings.  

2. Overview of verification framework 

2.1. Goodness of pronunciation score calculation 

The GOP calculation form here is adopted from [2]. Eq. (1) was 
used to calculate the log posteriors of phone p: 
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where 𝑜d is the acoustic feature at frame t; the start time and the 
end time of phone p are 𝑡^  and 𝑡_  respectively, derived from 
forced-alignment. 𝑃(𝑠|𝑜d) is the posterior at the frame level; s 
is the context-dependent label; set {𝑠 ∈ 𝑝} is a pool of context-
dependent phones with phone p in the central position. The 
GOP score of phone p can be calculated by Eq. (2): 

										𝐺𝑂𝑃(𝑝) = 𝑙𝑜𝑔 	no𝑝p𝑜; 𝑡^, 𝑡_q
	rst{u∈v}no𝑞p𝑜; 𝑡^, 𝑡_qx

																		(2)  

Where p is the canonical phone, q is the competing phone, and 
Q is a pool of possible phones. A threshold is needed to verify 
whether the current phone is a mispronunciation.  

2.2. Single-view approach with phone embedding and 
Siamese networks 

The traditional GOP models require labeled non-native speech 
data added into the training data for adapting models to evaluate 
non-native learners’ pronunciation, and very high diagnostic 
accuracy is needed to advance the solution. It is also of interest 
to apply a weak supervision approach based on learning from 
pairs of acoustic examples, using a contrastive loss. Pair-wise 
labels are a type of side information indicating whether the 
paired data is the same or not, which is easy to obtain in low-
resource and data-sparse situations. Unidentified matching 
pairs can typically be found by an unsupervised term discovery 
system based on previous studies [17,18]. Such pair-wise 
supervision methods have introduced the Siamese network to 
adapt to a discrimination objective. The Siamese network as 
suggested in [19], which has been used for various domains 
including vision applications [20] and semantic word 
embedding [21,22,23]. The network in this module consists of 
three identical neural networks with tied parameters, taking 
three chunks of acoustic features as input and projecting input 
into embeddings formed by the last fully-connected layers. The 
training objective is to optimize the distance between 
embeddings with a contrastive loss such that the embeddings 
corresponding to the same phones are close, and embeddings of 
different phones are far from each other. 

 
 
 
 
 
 
 

Figure. 1: Siamese networks structure. 
 

Fig. 1 illustrates the structure of the Siamese network  
with three inputs, where input1 and input2 are both 

acoustic feature matrix from the same type of phones, while 
input3 is a different feature matrix. A contrastive loss is listed 
below, similar to that of [24], employed to serve the objective 
of projecting the acoustic features into embeddings in the high-
level representation space. 
		𝐿𝑜𝑠𝑠z{|d}s^d = max{0,𝑚 + 𝑑z{^(𝑥+, 𝑥-) − 𝑑z{^(𝑥+, 𝑥�)}			  
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This loss is based on cosine distance, which aims to optimize 
the angle between embeddings corresponding to the same 

phone which ideally could be zero, and the angle for distinct 
phones would be orthogonal. 

2.3. Multi-view approach with multi-source information 
and embedding model 

The single-view approach take no advantage of multi-source 
information contained in bottleneck features and speech 
attribute patterns corresponding to phone-level segments. Here, 
we use a multi-view approach to learn embeddings from 
acoustic feature and multi-source information. The multi-view 
training framework is shown in Fig. 2.   

Bottleneck feature is a data-driven feature reflecting 
pronunciation information which contributes to phone 
discrimination. Bottleneck features are the outputs from 
internal layers in a multi-layer perceptron, which is a 
component of a state-of-art ASR system. Meanwhile, the 
speech attribute pattern is knowledge-driven information 
integrated with acoustic and phonetic knowledge [25,26]. Here, 
a set of single activation vector label set are made to describe 
speech attribute information of each phone in Mandarin. The 
basic patterns of speech attribute are derived from [27]. We split 
2 and 3 vowel transition (2 alias diphthong) into the individual 
vowels (e.g. iang to i-a-ng) to coarsely simulate the articulatory 
motions of phoneme production. 

The contrastive loss objective in [16] is easy to optimize 
with a satisfactory performance in the multi-view setup, as 
listed in Eq. (4). Acoustic feature x and multi-source 
information y are embedded by network f and g respectively. 
Fig. 3 shows the embedding model’s structure which is the 
same for network f and g. 
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where f(x)=[ 𝑓+(𝑥)𝑓-(𝑥) ], g(y)=[ 𝑔+(𝑦)𝑔-(𝑦) ], the above 
objective aims to make the distance between embeddings of 
paired acoustic feature 𝑥�  and information sequence 𝑦� 
smaller than the distance between embeddings of 𝑥�  and an 
unmatched information sequence 𝑦�. Information sequence 𝑦� 
corresponding to negative phone labels of  𝑥� contrasts with 
correct information sequence 𝑦� . m is a super-parameter 
representing a margin. 𝑑z{^ , as the cosine distance in Eq. (3). 
Another objective is listed in Eq. (5), where	𝑥� is an unmatched 
acoustic feature with acoustic feature 𝑥�.    
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Figure. 2: multi-view training framework 



 
  
  
  
  
  
  
  
  
  
  
  
  
  
   

Figure. 3: embedding model structure 

3. Experiments 

3.1. Speech corpora 

The training data employed is from Chinese National Hi-Tech 
Project 863 [28] for Mandarin large vocabulary continuous 
speech recognition (LVCSR) system development. 
Development and test data are from a Chinese L2 speech 
database, which can be referred to as BLCU inter-Chinese 
speech corpus [29]. L1 speech data is used as development data, 
and non-native (L2) speech data is used as test data here. 
 

Table 1: Training data description 
Items information 
Hours ≈110h 

Speaker 83 L1 males, 83 L1 females 
Number of utterance 96745 
Number of phonemes 2351095 

Average length per utterance 12 syllable 

Table 2: dev and test data description 
Items information 
Hours ≈13h 

Speaker 7 L2 females,  6 L1 males, 6 L1 females 
Number of utterance 5469 
Number of phonemes 81142 

Average length per utterance 14 syllable 

 

3.2. GOP-based system setup 

We developed a GOP-based assessment system using KALDI 
[30] to train acoustic models based on an ASR framework of 
CD–TDNN–HMM, which is also used for forced-alignment 
and extracting bottleneck features from the sixth TDNN layer. 
We used 13-dimensional Mel Frequency Cepstrum Coefficient 
(MFCC) as acoustic features. The TDNN network consists of 
six hidden layers, each of which contains 850 units. The 
softmax function is applied to the last layer to produce 2984 
(the number of senones) targets of probability distribution 
function (p.d.f) class. GOP-based system took augmented 
frame-level feature vectors as input, each of which was 

composed of 5 preceding, current and 5 succeeding frames, to 
produce frame-level log-posteriors. When the forced-alignment 
results were given, Eq. (1) was applied to calculate the GOP 
scores at phone level, and a threshold of 0.1 was set to tell 
whether candidate phone was pronounced the way the 
canonical phone sounded to get the best verification 
performance.   

3.3. Single-view system setup 

The input to the phone embedding models are acoustic features 
of 13 dimensions and fixed-length duration of 58 frames, with 
each phone segment was padded to 58 frames. Before acoustic 
feature matrixes were put into the models, Cepstrum Mean 
Variance normalization (CMVN) [31] was applied globally as 
feature normalization to alleviate influence from the speaker 
variance. The training set contained about 2.1M example 
segments, approximate 232k and 153k example segments 
constituted development and test sets respectively. The training 
triplets consisted of pairs with same phone types in training set 
and randomly drawn a third example of each triplets 
corresponding to a different phone type, as required for the 
contrastive loss with a margin of 0.4.  The network framework 
is depicted in Fig.1 with three identical embedding models. 
Bidirectional LSTM was adopted as the embedding model for 
that it was a natural model class of acoustic phone embedding, 
since it could handle arbitrary-length sequence feature and each 
unit of it contained the context-dependent information. Each 
embedding model consists of two Bidirectional LSTMs. The 
recurrent hidden state dimension per direction per layer was 
fixed at 512 and dropout probability [32] of 0.4 was used 
between stacked recurrent layers. The dimensionalities of the 
fully connected hidden layers were fixed at 512 and 256 
respectively. Dropout probability of 0.4 and Rectified linear 
unit (RELU) were employed between fully-connected layers.  
Outputs of  the last fully-connected layers were used as the 
learned embeddings. The training process used the Ada-delta 
[33] optimizer with an initial learning rate of 0.0001. The best-
performing converged model on native speech data was used 
for mispronunciation verification on the non-native test set.  

3.4. Multi-view system setup 

Embedding models in multi-view network structures for each 
view are consistent with single-view’s setup. For the acoustic 
view, the inputs of the models were 58*13 matrixes (58 frames 
for each phone, 13-dimension MFCC feature). The raw 
bottleneck features were 850 dimensions, then features were 
processed by dimension reduction into 40-dimensional features 
at each frame based on Probabilistic Local Pairwise Linear 
(PLDA) [34]. 58*40 matrixes were taken as the inputs of the 
data-based view. As shown in [27], there were 31 attribute 
items to discriminate phones by its speech attribute, for 
triphthongs and diphthongs, they should be described by 3 
individual monophthongs and 2 monophthongs respectively. 
Therefore, each phones’ speech attribute pattern matrix was 
fixed to 3*31 (consonants, monophthongs and diphthongs were 
padded with zero from behind). A negative speech attribute 
label sequence was generated by uniformly sampling a label 
different from the positive label in training set. Meanwhile, 
negative acoustic and bottleneck feature sequences were 
uniformly sampled from all of the mismatched feature 
sequences in the training set. Each were trained up to 1000 
epochs, and AP was computed per 20 epochs.  
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3.5. Evaluation metrics 

l False Rejection Rate (FRR): The percentage of 
mispronunciations being taken as correct pronunciations. 

l False Acceptance Rate (FAR): The percentage of correct 
pronunciations being taken as mispronunciations. 

l Diagnostic Accuracy (DA): The percentage of predicted 
phones correctly recognized i.e. correctly pronounced 
phones matches correct types, and mispronounced 
phones were different from the correct ones.  

l Averaged precision (AP): By sweeping thresholds, the 
averaged precision was calculated based on the area 
under the precision-recall curve. 

4. Results and Discussion 
Two contrastive losses and the combination were adopted to 
perform the multi-view method. These different objectives 
were applied to the phone discrimination task on native speech 
data, Table 3 shows the development set AP on native speech 
data, using different objectives. 𝑜𝑏𝑗+ (see Eq.5) slightly 
outperforms 𝑜𝑏𝑗�	  (see Eq. 4), especially in the method with 
multi-view of acoustic and bottleneck views. The symmetrized 
loss function adopts a more comprehensive phonetic 
information, because of this, the combination of 𝑜𝑏𝑗�	 and 𝑜𝑏𝑗+ 
with a symmetrized structure achieves the highest AP, which 
prominently outperforms the two individual objectives. The 
embedding-based measures offered acoustic templates at the 
phone-level, which replaced the likelihood in traditional 
methods with distance to improve clustering performance. In 
addition, multi-view methods use multi-source information, 
which is more discriminative than raw acoustic features, to 
revise phone-level clustering. The multi-view methods with 
objective 𝑜𝑏𝑗�	 + 𝑜𝑏𝑗+  outperformed the GOP-based method 
and single-view method, and the single-view method fell short 
of the multi-view methods, which means the multi-view method 
made progress on phone-level clustering results over single-
view methods. Specifically, the multi-view method with 
acoustic & speech attributes view achieved the best 
performance, and the multi-view method with acoustic & 
bottleneck views was also competitive. Figure 4 & 5 shows the 
AP on the development set for the multi-view method of 
acoustic & bottleneck view and acoustic & speech attribute 
view respectively, using different objectives. As observed, the 
development set AP grows at a relatively slow rate even after 
1000 epochs, and this unsaturated AP indicates that a phone 
discrimination accuracy could be promoted in a further step. 
Then the corresponding converged models with the best-
performing objective and the fixed threshold of 0.4 were used 
for mispronunciation verification task on non-native speech 
data. DAs for various methods were shown in Table 4.  

Table 3: Phone discrimination task with various methods 
Method AP 

GOP 69.32% 

Single-view 73.45% 

Multi-view (Acoustic + bottleneck) 

 

𝑜𝑏𝑗�	
+ 𝑜𝑏𝑗+ 

𝑜𝑏𝑗�	 𝑜𝑏𝑗+ 

77.16% 72.46%   73.82%    

Multi-view (Acoustic + speech 
attribute) 

 

𝑜𝑏𝑗�	
+ 𝑜𝑏𝑗+ 

𝑜𝑏𝑗�	 𝑜𝑏𝑗+ 

79.41% 74.33%   74.61%   

 
 
 
 
 
 
 
 

 
  Figure. 4: dev set AP for different objectives on phone 

discrimination task (Acoustic + bottleneck)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
  
 

Figure. 5: dev set AP for different objectives on phone 
discrimination task (Acoustic + speech attribute) 

Table 4: mispronunciation verification with various methods 
Method FRR  FAR DA 

GOP 21.86% 31.36% 80.93% 

Single-view 5.3% 30.29% 90.69% 

Multi-view  
(Acoustic+bottleneck 𝑜𝑏𝑗� + 𝑜𝑏𝑗+) 

5.2% 24.07% 91.43% 

Multi-view  
(Acoustic+speech attribute 𝑜𝑏𝑗� + 𝑜𝑏𝑗+) 

4.9% 19.81% 92.16% 

 

5. Conclusion 
In this study, a multi-view approach was considered for a 
mispronunciation verification task. Acoustic phone 
embeddings and multi-source information embeddings were 
jointly learned in the training process, where we had used 
bottleneck features and speech attribute patterns as multi-source 
information input views respectively. A range of objectives 
were explored. GOP-based method and single-view method 
were considered for comparison. In the single-view method, 
only the raw acoustic features with the pair-wise labels were 
used as inputs, it helped to reduce the phone-level recognition 
errors due to generic acoustic modelling confusion, which 
means to drop the FRR as depicted in Table 4. While there is 
still a need for more indicative features to revise the clustering 
results such that unknown examples are easier to be taken as 
dissimilar ones with the acoustic templates for a lower FAR. 
Overall, our final multi-view model of acoustic and speech 
attribute with combined 𝑜𝑏𝑗� + 𝑜𝑏𝑗+  shows the best 
performance over all other approaches.  
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