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ABSTRACT

In most cases deep learning architectures are trained disregarding

the amount of operations and energy consumption. However, some

applications, like embedded systems, can be resource-constrained

during inference. A popular approach to reduce the size of a deep

learning architecture consists in distilling knowledge from a bigger

network (teacher) to a smaller one (student). Directly training the

student to mimic the teacher representation can be effective, but it

requires that both share the same latent space dimensions. In this

work, we focus instead on relative knowledge distillation (RKD),

which considers the geometry of the respective latent spaces, allow-

ing for dimension-agnostic transfer of knowledge. Specifically we

introduce a graph-based RKD method, in which graphs are used to

capture the geometry of latent spaces. Using classical computer vi-

sion benchmarks, we demonstrate the ability of the proposed method

to efficiently distillate knowledge from the teacher to the student,

leading to better accuracy for the same budget as compared to exist-

ing RKD alternatives.

Index Terms— Deep Learning, Distillation, Graphs, Relational Dis-

tances

1. INTRODUCTION

Deep Neural Networks (DNNs) have been shown to outperform

other machine learning methods in numerous tasks [1, 2]. Their suc-

cess is heavily linked to the availability of large amounts of data and

special purpose hardware, e.g., graphics processing units (GPUs)

allowing significant levels of parallelism. However, this need for a

significant amount of computation is a limitation in the context of

embedded systems, where energy and memory are constrained. As

a result, numerous recent works [3, 4] have focused on compressing

deep learning architectures so that the inference process can be run

on embedded devices.

An approach to reduce the size of a deep learning architecture is in-

dividual knowledge distillation (IKD) [5, 6, 7], where the basic idea

is to use an available large network, called teacher, to train a smaller

one, called student, in an attempt to reduce the loss of accuracy in

replacing the former by the latter. Initial IKD techniques [6] focused

on using the output representations of the teacher as a target for the

smaller architecture, i.e., the student is trained to mimic the teacher

decisions. As a consequence, the knowledge acquired while train-

ing the teacher is diffused throughout all layers of the student during

backpropagation. More recent works have reached better accuracy

by performing this process layer-wise, or block-wise for complex
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architectures [7, 8]. However, IKD can be directly performed layer-

wise only if the student and the teacher have inner data representa-

tions with the same dimension [8], which narrows down significantly

the pairs (teacher, student) to which this can be applied. In an attempt

to overcome this limitation, in [7] the authors introduced extra layers

meant to perform distillation during training. These layers are then

disregarded during inference. This is problematic as the extra layers

encode part of the knowledge distilled by the teacher.

Forcing architectures for teacher and student to have the same latent

space dimensions is not practical. Indeed, in [9] the authors show

that for efficiently scaling down neural networks one should consider

three main aspects: (i) network depth (number of layers); (ii) net-

work width (number of feature maps per layer); (iii) resolution (size

of the input). Note that the two latest points are related to dimen-

sion of latent spaces. In an effort to allow distillation to be per-

formed layer-wise on architectures with varying dimensions, recent

works [10, 11] have introduced distillation in a dimension-agnostic

manner. To do so, these methods focus on the relative distances of

the intermediate representations of training examples, rather than on

the exact positions of each example in their corresponding domains.

These methods are referred to as relational knowledge distillation

(RKD).

In the present work we extend this notion of RKD by introducing

graph knowledge distillation (GKD). As in our prior work [12], we

construct graphs where vertices represent training examples, and

the edge weight between two vertices is a function of the similar-

ity between the representations of the corresponding examples at a

given layer of the network architecture. The main motivation for

this choice is that even though representations generally have differ-

ent dimensions in each architecture, the size of the corresponding

graphs is always the same (since the number of nodes is equal to

the number of training examples). Thus, information from graphs

generated from the teacher architecture can be used to train the stu-

dent architecture by introducing a discrepancy loss between their re-

spective adjacency matrices during training. Our main contributions

are: we introduce a layer-wise distillation process using graphs, ex-

tending the RKD framework, and we demonstrate that this method

can improve the accuracy of students trained in the context of dis-

tillation, using standard vision benchmarks. The reported gains are

about twice as important as those obtained by using standard RKD

instead of no distillation.

The paper is organized as follows: In Section 2, we present related

work. In Section 3 we define notations, introduce our proposed

framework and detail the generalizations it allows. In Section 4,

we perform experiments and discuss them. Section 5 provides some

conclusions.

http://arxiv.org/abs/1911.03080v1


2. RELATED WORK

Neural network compression: Reducing DNNs size and computa-

tional power is an active field of research that attracted a lot of at-

tention since it eases implementation of DNNs on resource-limited

devices such as smartphones, enabling mobile applications. Some

authors propose to use high level approaches such as pruning tech-

niques [13, 14], factorization [4, 15], efficient neural network archi-

tectures and/or layers [9, 16, 17, 18], knowledge distillation [5, 6,

7, 8, 10, 19, 20] and quantizing weights and activations [3, 15, 20].

All these approaches can be seen as complementary with each other

(e.g. [20] combines distillation and weight quantization.). Our work

is better defined as neural network compressing via distillation and

is therefore complementary to the mentioned approaches.

Neural network distillation: Following [11], we distinguish ap-

proaches transferring knowledge input by input, from approaches

focusing on relative distances on a batch of inputs. The former are

known as individual knowledge distillation (IKD) [5, 6, 8, 7, 20] and

the latter as relational knowledge distillation (RKD) [10, 11].

In IKD, each example is treated independently, which means that the

transferred representations from teacher to student have to be of the

same dimension. This is not a problem if we consider only the output

of the network [6], but it has been shown that by doing it in layer-

wise/block-wise fashion it is possible to get better results. To deal

with this, [7] adds linear mappings to the student network so that its

representations match those of the teacher in terms of dimensions,

while [8] proposes to do it only at the end of each block, reducing

the amount of parameters inside the block, but keeping the same

dimensions for the output.

On the other hand, RKD considers relative positioning of examples

in latent spaces, and then compare these between teacher and stu-

dent. It is therefore dimension agnostic. In [10] the authors are

inspired by the triplet loss [19]. In another vein, in [11] a general

framework is introduced, using either the Euclidean distance be-

tween pairs of examples, or angular distance between triplets. Our

work can be seen as an extension of the Euclidean version of RKD,

explicitly using graphs to model the relational distances. This allows

us to derive more diverse variations of the method, such as higher-

order geometric relations and graph signal analysis, while also being

able to retrieve the baselines introduced in [11].

Graphs and neural networks: The use of graphs in neural net-

works has been of high interest to the community, thanks to the de-

velopments in Graph Signal Processing (GSP) [21]. Most works are

interested in dealing with inputs defined on graphs [22]. Other works

use graphs as a proxy to the topology of intermediate representations

of inputs within the network. They are then used to interpret what

the network is learning [12, 23] or to enhance its robustness [24, 25].

Based on our prior work [12], in this work we extend the concept of

using graphs to represent the geometry of latent spaces in order to

perform relational knowledge distillation.

3. METHODOLOGY

3.1. IKD and RKD

Let T and S denote the teacher and student architectures, respec-

tively. We aim at transferring knowledge from T to S, where S

typically contains fewer parameters than T . For presentation sim-

plicity, we assume that both architectures generate the same number

of inner representations, even though the method could easily be ex-

tended to cases where this is not true. In the context of distillation,

we consider that the teacher has already been trained, and that we

want to use both the training set and the inner representations of the

teacher in order to train the student. This is an alternative to directly

training the student using only the training data (which we refer to

as “baseline” in our experiments). Formally, we use the following

loss to train the student:

L = Ltask + λKD · LKD , (1)

where Ltask is typically the same loss that was used to train the

teacher (e.g. cross-entropy), LKD is the distillation loss and λKD is

a scaling parameter to control the importance of the distillation with

respect to that of the task.

Denote X a batch of input examples and Λ a set of layers on

which we aim at transferring knowledge. When processing an

input x, a deep neural network architecture A generates a series

of inner representations, one for each layer ℓ of the network:

x
A
1 ,x

A
2 , . . . ,x

A
ℓ , . . . ,x

A
L . IKD approaches try to directly com-

pare the inner representations of both teacher and student when

processing the same input x. Thus, the IKD loss can be written

as [5, 6, 7, 8, 20]:

LIKD =
∑

ℓ∈Λ

∑

x∈X

Ld(x
S
ℓ ,x

T
ℓ ),

where, typically, Ld is a measure of the distance between its argu-

ments, which requires that they have the same dimension.

In contrast, RKD approaches consider relative metrics between the

respective inner representations of the networks to be compared. In

the specific case of RKD-D [11], the mathematical formulation be-

comes:

LRKD-D =
∑

ℓ∈Λ

∑

(x,x′)∈X2

Ld

(

‖xS
ℓ − x

′S
ℓ ‖2

∆S
ℓ

,
‖xT

ℓ − x
′T
ℓ ‖2

∆T
ℓ

)

,

where ∆A
ℓ is the average distance between all couples (xA

ℓ ,x
′A
ℓ ) for

the given architecture at layer ℓ and Ld is the Huber loss [26]. The

main advantage of using RKD is that it allows to distillate knowledge

from an inner representation of the teacher to one of the student, even

if their respective dimensions are different.

3.2. Proposed Approach: Graph Knowledge Distillation (GKD)

Instead of directly trying to make the distances between data points

in the student match those of the teacher, we consider the problem

from a graph perspective. Given an architecture A, a batch of inputs

X and a layer ℓ, we compute the corresponding inner representa-

tions XA
ℓ = [xA

ℓ ,x ∈ X]. Using a given similarity metric, we can

then use these representations to define a k-nearest neighbor simi-

larity graph GA
ℓ (X) = 〈XA

ℓ ,WA
ℓ 〉. The graph contains a node for

each input in the batch, and the edge weight WA
ℓ [ij] represents the

similarity between the i-th and the j-th elements of XA
ℓ , or 0 (de-

pending on k). In this work, we use the cosine similarity. To avoid

giving excessive importance to outliers, we also normalize the adja-

cency matrix as follows: AA
ℓ , D

−1/2
W

A
ℓ D

−1/2, where D is the

diagonal degree matrix of the graph.



While training the student, we input our training batch into both the

student architecture and the (now fixed) previously trained teacher

architecture. This provides a similarity graph for each layer in Λ.

The loss we aim to minimize combines the task loss, as expressed in

Equation (1), with the following graph knowledge distillation (GKD)

loss:

LGKD =
∑

ℓ∈Λ

Ld(G
S
ℓ (X),GT

ℓ (X)) . (2)

In our work, we mainly consider the case where Ld is the L2 dis-

tance between the adjacency matrix of its arguments.

The GKD loss measures the discrepancy between the adjacency ma-

trices of teacher and student graphs. In this way the geometry of

the latent representations of the student will be forced to converge to

that of the teacher. Our intuition is that since the teacher network is

expected to generalize well to the test, mimicking its latent represen-

tation geometry should allow for better generalization of the student

network as well.

As the values of A are normalized by the degree matrix, the Huber

loss simplifies to the square of the Frobenius norm of the matrix

resulting from the difference of the student and teacher adjacency

matrices. An equivalent definition of our proposed loss is:

LGKD =
∑

ℓ∈Λ

‖AS
ℓ −A

T
ℓ ‖

2
2 . (3)

A first obvious advantage of GKD with respect to RKD-D is the fact

it allows normalization over the batch of inputs, yielding to a more

robust process. This is discussed in Section 4.3. Amongst other

degrees of freedom that are available to us, in this paper we focus on

three possible variations of the method:

1. Locality: varying the value k when constructing k-nearest

neighbor graphs. This allows us to focus only on the closest

neighbors of each example,

2. Higher order: taking powers p of the normalized adjacency

matrix of considered graphs before computing the loss. By

considering higher powers of matricesA, we consider higher-

order geometric relations between inner representations of in-

puts,

3. Task specific: considering only examples of the same (resp.

distinct) classes when creating the edges of the graph, thus

focusing on the clustering (resp. margin) of classes.

4. EXPERIMENTS

We perform two types of experiments. We first evaluate accuracy

of RKD-D and proposed GKD using the CIFAR-10 and CIFAR-100

datasets of tiny images [27]. We then look at proposed variations of

GKD.

4.1. Hyperparameters

We train our CIFAR-10/100 networks for 200 epochs, using stan-

dard Stochastic Gradient Descent (SGD) with batches of size 128

(|X| = 128) and an initial learning rate of 0.1 that is decayed by

a factor of 0.2 at epochs 60, 120 and 160. We also add a momen-

tum of 0.9 and follow standard data augmentation procedure [1].

We use a WideResNet28-1 [1] architecture for our teacher network,

while the student network uses a WideResNet28-0.5. In terms of

scale, WideResNet28-0.5 has approximately 27% of the operations

and parameters of WideResNet28-1. All these architectures are par-

ticularly small compared to state-of-the-art. We use a network of

same size of the students but trained without a teacher as a base-

line that we call Vanilla. Our RKD-D [11] students are trained with

the parameters from [11], λRKD-D = 25 and applied to the output of

each block. We applied the same values for GKD. Note that all these

choices were made to remain as consistent as possible with existing

literature. For each student network we run 3 tests and report the

median value. The code for reproducing the experiments is available

at https://github.com/cadurosar/graph_kd.

4.2. Direct comparison between GKD and RKD-D

In a first experiment we simply evaluate the test set error rate when

performing distillation. Results are summarized in Table 1. We com-

pare student sized networks trained without distillation (Baseline),

with GKD and RKD-D [11]. We also report the performance of the

teacher (that can be seen as an upper bound). RKD-D [11] by it-

self provides a small gain in error rate with respect to the Baseline

approach, while GKD outperforms RKD-D by almost the same gain.

Table 1. Error rate comparison of GKD and RKD-D on the CIFAR-

10/100 datasets.

Method CIFAR-10 CIFAR-100 Relative size

Teacher 7.27% 31.26% 100%

Baseline 10.26% 38.50% 27%

RKD-D [11] 10.06% 38.26% 27%

GKD 9.70% 38.17% 27%

4.3. Effect of the normalization

To better understand why GKD performed better than RKD-D we

analyze the contribution of each example in a batch in both the GKD

loss and the RKD-D one. If our premise from Section 3.2 is cor-

rect, by using a degree normalized adjacency matrix instead of the

distance pairs directly, most examples will be able to contribute to

the optimization. To do so, we compute the respective loss, for each

block, using 50 batches of 1000 training set examples and analyze

the median amount of examples that are responsible for 90% of the

loss at each block. In Table 2, we present the results. As we sus-

pected for GKD shows a significant advantage on the number of ex-

amples responsible for 90% of the loss.

Table 2. Comparison of the effect of the normalization on the

amount of examples that it takes to achieve 90% of the total loss

value.

Block position in the architecture RKD-D GKD

Middle 83.70% 86.50%

Final 82.05% 83.60%

https://github.com/cadurosar/graph_kd


4.4. Classification consistency

We now take our trained students and compare their outputs to the

trained teacher’s outputs. For the output of each WideResNet block

we compute the classification of a simple Logistic Regression, while

the network’s final output is already a classifier. The ideal scenario

would be one where the student is 100% consistent with the teacher’s

decision on the test set, as this would greatly improve the classifica-

tion performance when compared to the baseline. The results are

depicted in Figure 1. As expected the GKD was able to be more

consistent with the teacher than the RKD-D.
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RKD-D

GKD

Fig. 1. Analysis of the consistency of classification compared to the

teacher, across layers of RKD-D and GKD students. We consider

the output of the network as the “fourth block”.

4.5. Spectral analysis

Given that we have introduced intermediate representation graphs, it

is quite natural to analyze performance from a graph signal process-

ing perspective [21]. We propose to do this by considering specific

graph signals s and computing their respective smoothness on each

of the two graphs. Smoothness is computed as σ = s⊤Ls, where L
is the Laplacian of the studied graph (L = D−W). Lower values of

σ mean that the signal is better aligned with the graph structure. We

create graphs with 1000 examples chosen at random from the train-

ing set. The signals that we consider are (i) the label binary indicator

signal, which we have previously shown to be a good indicator for

overfitting/underfitting [12] or robustness [24]; (ii) the Fiedler eigen-

vectors from each intermediate representation in the teacher, which

allow us to compare the clustering of both networks and how they

evolve over successive layers. The results are depicted in Figure 2.

We can see that both signals have more smoothness in the graphs

generated by GKD. This means that the geometry of the latent spaces

from GKD are more aligned to those of the teacher.
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Fig. 2. Analysis of the smoothness evolution across layers of the

RKD-D and GKD students. In the right we have the label binary

indicator signal and in the left we use the Teacher’s Fiedler vector as

a signal.

4.6. Effect of locality

We now consider variations of the proposed GKD method. The first

one is the effect of changing the value k. The main effect of low-

ering the value of k is to focus on most similar examples. Indeed,

large distances, typically at early layers, can be meaningless. Results

are summarized in Table 3. Lower values of k yield better results,

showing that it is preferable to focus on the closest neighbors than

all distances. This is similar to results such as [19], where the au-

thors show that it is best to concentrate on the hardest cases, instead

of trying to solve all of them.

Table 3. Analysis of the effect of varying k on the networks error

rates.

k |X| |X|/2 5

Error Rate 9.70% 9.55% 9.43%

4.7. Higher orders

We then study the effect of varying the power of adjacency matrices

p. This allows us to consider higher-order geometric relations be-

tween inner representation of inputs when compared to fixing p to

1. The results are presented in Table 4. Higher-order geometric re-

lations do not seem to help the transfer of knowledge. One possible

reason for this result is that using all the distances for a higher-order

relation introduces too much noise.

Table 4. Analysis of the effect of varying p on the networks error

rates.

p 1 2 3

Error Rate 9.70% 10.44% 10.37%

4.8. Task specific graph signals

Now we evaluate the effects of considering only intra or inter-class

distances. If we consider only inter-class distances we can focus

mostly on having a similar margin in both teacher and student. On

the other hand, considering only intra-class distances would force

both networks to perform the same type of clustering on the classes.

The results are presented in Table 5. In this case, focusing on the

margin helped, while concentrating on the clustering was not effec-

tive. This result is similar to what we found in our prior work [24],

which shows that the margin is a better tool to interpret the network

results than the class clustering.

Table 5. Analysis of the effect of focusing either on the margin or

on the class clustering.

Pairs Error Rate

All possible pairs 9.70%

Only pairs of distinct classes 9.54%

Only pairs of the same class 10.35%



5. CONCLUSION

We introduced graphs knowledge distillation, a method using graphs

to transfer knowledge from a teacher architecture to a student one.

By using graphs, the method opens the way to numerous variations

that can significantly benefit the accuracy of the student, as demon-

strated by our experiments. In future work we consider: (i) using

more appropriate graph distances, such as in [28, 29]; (ii) doing

a more in-depth exploration of how to properly scale the student

network, e.g. following [9]; (iii) combining with approaches such

as [19, 30] to train a teacher network in a layer-wise fashion.
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