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ABSTRACT

While deep learning systems have gained significant ground
in speech enhancement research, these systems have yet to
make use of the full potential of deep learning systems to pro-
vide high-level feedback. In particular, phonetic feedback
is rare in speech enhancement research even though it in-
cludes valuable top-down information. We use the technique
of mimic loss to provide phonetic feedback to an off-the-shelf
enhancement system, and find gains in objective intelligibil-
ity scores on CHiME-4 data. This technique takes a frozen
acoustic model trained on clean speech to provide valuable
feedback to the enhancement model, even in the case where
no parallel speech data is available. Our work is one of the
first to show intelligibility improvement for neural enhance-
ment systems without parallel speech data, and we show pho-
netic feedback can improve a state-of-the-art neural enhance-
ment system trained with parallel speech data.

Index Terms— speech intelligibility, phonetic feedback,
mimic loss, CHiME-4, parallel data

1. INTRODUCTION

Typical speech enhancement techniques focus on local cri-
teria for improving speech intelligibility and quality. Time-
frequency prediction techniques use local spectral quality es-
timates as an objective function; time domain methods di-
rectly predict clean output with a potential spectral quality
metric [1]]. Such techniques have been extremely success-
ful in predicting a speech denoising function, but also require
parallel clean and noisy speech for training. The trained sys-
tems implicitly learn the phonetic patterns of the speech signal
in the coordinated output of time-domain or time-frequency
units. However, our hypothesis is that directly providing pho-
netic feedback can be a powerful additional signal for speech
enhancement. For example, many local metrics will be more
attuned to high-energy regions of speech, but not all phones
of a language carry equal energy in production (compare /v/
to /ae/).

Our proxy for phonetic intelligibility is a frozen automatic
speech recognition (ASR) acoustic model trained on clean
speech; the loss functions we incorporate into training encour-
age the speech enhancement system to produce output that is

interpretable to a fixed acoustic model as clean speech, by
making the output of the acoustic model mimic its behavior
under clean speech. This mimic loss [2] provides key linguis-
tic insights to the enhancement model about what a recogniz-
able phoneme looks like.

When no parallel data is available, but transcripts are
available, a loss is easily computed against hard senone la-
bels and backpropagated to the enhancement model trained
from scratch. Since the clean acoustic model is frozen, the
only way for the enhancement model to improve the loss is to
make a signal that is more recognizable to the acoustic model.
The improvement by this model demonstrates the power of
phonetic feedback; very few neural enhancement techniques
until now have been able to achieve improvements without
parallel data.

When parallel data is available, mimic loss works by com-
paring the outputs of the acoustic model on clean speech with
the outputs of the acoustic model on denoised speech. This
is a more informative loss than the loss against hard senone
labels, and is complimentary to local losses. We show that
mimic loss can be applied to an off-the-shelf enhancement
system and gives an improvement in intelligibility scores. Our
technique is agnostic to the enhancement system as long as it
is differentiably trainable.

Mimic loss has previously improved performance on ro-
bust ASR tasks [2], but has not yet demonstrated success at
enhancement metrics, and has not been used in a non-parallel
setting. We seek to demonstrate these advantages here:

1. We show that using hard targets in the mimic loss
framework leads to improvements in objective intelli-
gibility metrics when no parallel data is available.

2. We show that when parallel data is available, training
the state-of-the-art method with mimic loss improves
objective intelligibility metrics.

2. RELATED WORK

Speech enhancement is a rich field of work with a huge
variety of techniques. Spectral feature based enhancement
systems have focused on masking approaches [3]], and have
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Fig. 1. Operations are listed inside shapes, the circles are operations that are not parameterized, the rectangles represent
parameterized operations. The gray operations are not trained, meaning the loss is backpropagated without any updates until

the front-end denoiser is reached.

gained popularity with deep learning techniques [4] for ideal
ratio mask and ideal binary mask estimation [J5].

2.1. Perceptual Loss

Perceptual losses are a form of knowledge transfer [6], which
is defined as the technique of adding auxiliary information at
train time, to better inform the trained model. The first per-
ceptual loss was introduced for the task of style transfer [7]].
These losses depends on a pre-trained network that can disen-
tangle relevant factors. Two examples are fed through the net-
work to generate a loss at a high level of the network. In style
transfer, the perceptual loss ensures that the high-level con-
tents of an image remain the same, while allowing the texture
of the image to change.

For speech-related tasks a perceptual loss has been used
to denoise time-domain speech data [8], where the loss was
called a ’deep feature loss”. The perceiving network was
trained for acoustic environment detection and domestic au-
dio tagging. The clean and denoised signals are both fed to
this network, and a loss is computed at a higher level.

Perceptual loss has also been used for spectral-domain
data, in the mimic loss framework. This has been used for
spectral mapping for robust ASR in [2] and [9]. The per-
ceiving network in this case is an acoustic model trained with
senone targets. Clean and denoised spectral features are fed
through the acoustic model, and a loss is computed from the
outputs of the network. These works did not evaluate mimic
loss for speech enhancement, nor did they develop the frame-
work for use without parallel data.

2.2. Enhancement Without Parallel Data

One approach for enhancement without parallel data intro-
duces an adversarial loss to generate realistic masks [10].
However, this work is only evaluated for ASR performance,
and not speech enhancement performance.

For the related task of voice conversion, a sparse repre-
sentation was used by [[L1] to do conversion without parallel
data. This wasn’t evaluated on enhancement metrics or ASR
metrics, but would prove an interesting approach.

Several recent works have investigated jointly training
the acoustic model with a masking speech enhancement
model [12, 13 [14], but these works did not evaluate their
system on speech enhancement metrics. Indeed, our internal
experiments show that without access to the clean data, joint
training severely harms performance on these metrics.

3. MIMIC LOSS FOR ENHANCEMENT

As noted before, we build on the work by Pandey and Wang
that denoises the speech signal in the time domain, but com-
putes a mapping loss on the spectral magnitudes of the clean
and denoised speech samples. This is possible because the
STFT operation for computing the spectral features is fully
differentiable. This framework for enhancement lends itself
to other spectral processing techniques, such as mimic loss.

In order to train this off-the-shelf denoiser using the
mimic loss objective, we first train an acoustic model on
clean spectral magnitudes. The training objective for this
model is cross-entropy loss against hard senone targets. Cru-
cially, the weights of the acoustic model are frozen during
the training of the enhancement model. This prevents passing
information from enhancement model to acoustic model in
a manner other than by producing a signal that behaves like
clean speech. This is in contrast to joint training, where the
weights of the acoustic model are updated at the same time
as the denoising model weights, which usually leads to a
degradation in enhancement metrics.

Without parallel speech examples, we apply the mimic
loss framework by using hard senone targets instead of soft
targets. The loss against these hard targets is cross-entropy
loss (Lcg). The senone labels can be gathered from a hard
alignment of the transcripts with the noisy or denoised fea-
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Fig. 2. Comparison of a short segment of the log-mel filterbank features of utterance M06_441C020F_STR from the CHiME-4
corpus. The generation procedure for the features are as follows: (a) noisy, (b) clean, (c) non-parallel mimic, (d) local losses,
(e) local + mimic loss. Highlighted is a region enhanced by mimic loss but ignored by local losses.

tures; the process does not require clean speech samples.
Since this method only has access to phone alignments and
not clean spectra, we do not expect it to improve the speech
quality, but expect it to improve intelligibility.

We also ran experiments on different formats for the
mimic loss when parallel data is available. Setting the
mapping losses to be L; was determined to be most ef-
fective by Pandey and Wang. For the mimic loss, we tried
both teacher-student learning with L; and Lo losses, and
knowledge-distillation with various temperature parameters
on the softmax outputs. We found that using L; loss on the
pre-softmax outputs performed the best, likely due to the fact
that the other losses are also L;. When the loss types are
different, one loss type usually comes to dominate, but each
loss serves an important purpose here.

We provide an example of the effects of mimic loss, both
with and without parallel data, by showing the log-mel fil-
terbank features, seen in Figure 2] A set of relatively high-
frequency and low-magnitude features is seen in the high-
lighted portion of the features. Since local metrics tend to
emphasize regions of high energy differences, they miss this
important phonetic information. However, in the mimic-loss-
trained systems, this information is retained.

4. EXPERIMENTS

For all experiments, we use the CHiME-4 corpus, a popular
corpus for robust ASR experiments, though it has not often
been used for enhancement experiments. During training, we
randomly select a channel for each example each epoch, and
we evaluate our enhancement results on channel 5 of et05.
Before training the enhancement system, we train the

acoustic model used for mimic loss on the clean spectral
magnitudes available in CHiME-4. Our architecture is a
Wide-ResNet-inspired model, that takes a whole utterance
and produces a posterior over each frame. The model has 4
blocks of 3 layers, where the blocks have 128, 256, 512, 1024
filters respectively. The first layer of each block has a stride of
2, down-sampling the input. After the convolutional layers,
the filters are divided into 16 parts, and each part is fed to a
fully-connected layer, so the number of output posterior vec-
tors is the same as the input frames. This is an utterance-level
version of the model in [9].

In the case of parallel data, the best results were obtained
by training the network for only a few epochs (we used 5).
However, when using hard targets, we achieved better results
from using the fully-converged network. We suspect that the
outputs of the converged network more closely reflect the one-
hot nature of the senone labels, which makes training easier
for the enhancement model when hard targets are used. On
the other hand, only lightly training the acoustic model gen-
erates softer targets when parallel data is available.

For our enhancement model, we began with the state-of-
the-art framework introduced by Pandey and Wang in [1]],
called AECNN. We reproduce the architecture of their sys-
tem, replacing the PReLU activations with leaky ReLU acti-
vations, since the performance is similar, but the leaky ReLU
network has fewer parameters.

4.1. Without parallel data

We first train this network without the use of parallel data, us-
ing only the senone targets, and starting from random weights
in the AECNN. In Table [I] we see results for enhancement



Features SI-SDR  eSTOI
Noisy speech 7.5 68.3
Mimic - hard targets 1.6 72.6
Joint training 0.6 47.0

Table 1. Speech enhancement scores for the state-of-the-art
architecture trained from scratch without the parallel clean
speech data from the CHiME-4 corpus. Evaluation is done
on channel 5 of the simulated et05 data. The joint training is
done with an identical setup to the mimic system.

without parallel data: the cross-entropy loss with senone
targets given a frozen clean-speech network is enough to im-
prove eSTOI by 4.3 points. This is a surprising improvement
in intelligibility given the lack of parallel data, and demon-
strates that phonetic information alone is powerful enough to
provide improvements to speech intelligibility metrics. The
degradation in SI-SDR performance, a measure of speech
quality, is expected, given that the denoising model does not
have access to clean data, and may corrupt the phase.

We compare also against joint training of the enhance-
ment model with the acoustic model. This is a common tech-
nique for robust ASR, but has not been evaluated for enhance-
ment. With the hard targets, joint training performs poorly on
enhancement, due to co-adaptation of the enhancement and
acoustic model networks. Freezing the acoustic model net-
work is critical since it requires the enhancement model to
produce speech the acoustic model sees as “clean.”

4.2. With parallel data

In addition to the setting without any parallel data, we show
results given parallel data. In Table 2] we demonstrate that
training the AECNN framework with mimic loss improves
intelligibility over both the model trained with only time-
domain loss (AECNN-T), as well as the model trained with
both time-domain and spectral-domain losses (AECNN-T-
SM). We only see a small improvement in the SI-SDR, likely
due to the fact that the mimic loss technique is designed to
improve the recognizablity of the results. In fact, seeing any
improvement in SI-SDR at all is a surprising result.

We also compare against joint training with an identical
setup to the mimic setup (i.e. a combination of three losses:
teacher-student loss against the clean outputs, spectral magni-
tude loss, and time-domain loss). The jointly trained acoustic
model is initialized with the weights of the system trained on
clean speech. We find that joint training performs much bet-
ter on the enhancement metrics in this setup, though still not
quite as well as the mimic setup. Compared to the previous
experiment without parallel data, the presence of the spectral
magnitude and time-domain losses likely keep the enhance-
ment output more stable when joint training, at the cost of
requiring parallel training data.

Features SI-SDR  eSTOI
Noisy speech 7.5 68.3
AECNN-T 11.5 77.0
+ Mimic loss 11.9 79.1
AECNN-T-SM 11.7 78.9
+ Mimic loss 11.9 79.8
Joint training 11.7 79.5

Table 2. Speech enhancement scores for the state-of-the-art
system trained with the parallel data available in the CHiME-
4 corpus. Evaluation is done on channel 5 of the simulation
et05 data. Mimic loss is applied to the AECNN model trained
with time-domain mapping loss only, as well as time-domain
and spectral magnitude mapping losses. The joint training
system is done with an identical setup to the mimic system
with all three losses.

5. CONCLUSION

We have shown that phonetic feedback is valuable for speech
enhancement systems. In addition, we show that our approach
to this feedback, the mimic loss framework, is useful in many
scenarios: with and without the presence of parallel data, in
both the enhancement and robust ASR scenarios. Using this
framework, we show improvement on a state-of-the-art model
for speech enhancement. The methodology is agnostic to the
enhancement technique, so may be applicable to other differ-
entiably trained enhancement modules.

In the future, we hope to address the reduction in speech
quality scores when training without parallel data. One ap-
proach may be to add a GAN loss to the denoised time-
domain signal, which may help with introduced distortions.
In addition, we could soften the cross-entropy loss to an L
loss by generating “prototypical” posterior distributions for
each senone, averaged across the training dataset.

Mimic loss as a framework allows for a rich space of
future possibilities. To that end, we have made our code
available at http://github.com/0OSU-slatelab/
mimic—enhance.
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