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ABSTRACT

The objective of this paper is to learn representations of speaker
identity without access to manually annotated data. To do so, we
develop a self-supervised learning objective that exploits the natural
cross-modal synchrony between faces and audio in video. The key
idea behind our approach is to tease apart—without annotation—the
representations of linguistic content and speaker identity. We
construct a two-stream architecture which: (1) shares low-level
features common to both representations; and (2) provides a natural
mechanism for explicitly disentangling these factors, offering
the potential for greater generalisation to novel combinations of
content and identity and ultimately producing speaker identity
representations that are more robust.

We train our method on a large-scale audio-visual dataset of talk-
ing heads ‘in the wild’, and demonstrate its efficacy by evaluating
the learned speaker representations for standard speaker recognition
performance.

Index Terms: speaker recognition, cross-modal learning, self-
supervised machine learning

1. INTRODUCTION

The coupling of deep neural networks with large-scale labelled
training datasets has produced a number of notable successes, yield-
ing improved performance in speech related tasks such as ASR [1]
and speaker verification [2, 3]. However, the considerable cost
of manually producing such labels ultimately limits the potential
of fully supervised approaches. By contrast, methods which are
able to learn effective representations from data with few labelled
examples can in principle benefit from the ever-increasing quantity
of existing unlabelled speech data.

The objective of this paper is to develop one such method for
learning compact and robust representations of speaker identity
without supervision. Ultimately, these representations can then be
used for a number of downstream tasks such as speaker recognition,
clustering and diarisation etc. To achieve this goal, we propose to ex-
ploit the natural synchrony between faces and audio in audio-visual
video data as a supervisory signal, removing the need for speaker an-
notation. To facilitate our method, we assume access to a large-scale
collection of unlabelled speaking face-tracks [4], which can be read-
ily obtained through self-supervised techniques for active speaker
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Fig. 1. To learn representations for speaker recognition without
labels, our method relies on two hypotheses: (1) face and voice
samples within a single face-track are likely to share a common
identity, but different linguistic content across time; (2) face and
voice samples from different face-tracks are likely to have both
different speaker identities and different linguistic content.

detection [5]. Beyond access to this data, our approach makes use
of two weak statistical cues to define a self-supervised learning
objective (Fig. 1): we assume that faces and voices extracted within
a face-track at small offsets are likely to have the same speaker
identity but different linguistic content, while faces and voices from
different face-tracks are likely to differ in both content and speaker
identity. As we show in Sec. 3, these cues can be combinedd to learn
representations of speaker identity which minimise their dependence
on speaker content. The motivation for doing so is simple: unlike
earlier datasets such as TIMIT [6] that are carefully balanced for
phonetic and dialectal coverage, more modern (and larger) datasets
created from uncontrolled speech ‘in the wild” are likely to contain
a strong correlation between identity and linguistic content. For
example, VoxCeleb2 [7] consists of interviews of famous celebrities
from a wide variety of professions, whose speech can be closely
tied to their occupation—the cricketer Adam Gilchrist says the word
‘cricket’ 17 times and ‘president’ O times; whereas the politician
Nancy Pelosi says the word ‘president’ 88 times, ‘Democrats’ 19
times and ’cricket’ 0 times. Consequently, a model trained to rep-
resent identity may be incentivised to use linguistic content as a
discriminative cue. While some coupling between content and iden-
tity is natural, over-reliance on content can prevent generalisation to
new settings, harming robustness. More broadly, disentangled repre-
sentations can, in principle, achieve an exponential improvement in
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generalisation efficiency over their entangled counterparts, because
they are able to represent novel combinations of factors that were
encountered separately (but never in combination) during training.
In this work, we make the following contributions: (1) We
propose a novel framework for learning speech representations
capturing information at different time scales in the speech signal,
including in particular the identity of the speaker; (2) we show
that we can learn these representations from a large, unlabelled
collection of “talking faces” in videos as a source of free supervision,
without the need for any manual annotation; (3) we show that
sharing a trunk architecture for two different tasks (content and
speaker identity) and adding an explicit disentanglement objective
between the two improves performance; and, (4) we evaluate the
performance of our self-supervised embeddings on the popular
VoxCelebl speaker recognition benchmark and compare to fully
supervised methods. All data and models will be released.

2. RELATED WORK

Representation Learning. The ability to represent variable-length
high-dimensional audio segments using compact, fixed-length
representations has proven useful for many speech applications
such as speaker verification [3, 7], audio emotion classification [8],
and spoken term detection (STD) [9], where the representation
can be coupled with a standard classifier. The use of fixed-length
representations also enables efficient storage and retrieval when
paired with an inverted index. These representations can either
be hand-crafted, such as MFCCs or learned from data - such as
i-vectors and deep neural networks. While the former may fail to
capture the correct underlying factors for the task, the latter require
large amounts of expensively labeled training data to be effective.
As a consequence, there has recently been renewed interest in
learning unsupervised audio representations [ 10].

Disentangled Representation Learning. Motivated by their at-
tractive compositional properties and theoretical ability to generalise
efficiently, a number of models that seek to learn disentangled
representations in a weakly supervised or self-supervised manner
have been proposed, such as DC-IGN [I1], InfoGAN [12] and
VQ-VAE [13]. Due to the proliferation of video data, there has
also been a renewed interest in learning representations from
sequential data [14, 15, 16, 17]. These self-supervised works focus
on predicting future, missing or contextual information, all within
the same modality. However to the best of our knowledge, no prior
method has sought to learn disentangled representations through
cross-modal self-supervision.

Audio-Visual Self Supervision. A number of recent works [18,
, 20,21, 22] have explored the concept of exploiting the correspon-
dence between synchronous audio and visual data in teacher-student
style architectures (where the ‘teacher’ is represented by a pretrained
network) [18, 20], or two-stream networks where both networks
are trained from scratch [19, 5]. Additional work has examined
cross-modal relationships between faces and voices specifically in
order to learn identity [23, 24, 25] or emotion [8] representations.
In contrast to these works, we aim to learn representations of both
content and identity with a view to explicitly disentangling separate
factors—we compare our approach with theirs in Sec. 4.
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Fig. 2. The framework for learning representations of speaker
identity. We aim to explicitly disentangle speech representations
into content and identity embeddings. Under the notation of Sec. 3,
we show B =1 facetracks in the input and /N =3 samples per track.
Top diagram: the identity (L1) and content classification losses (L2);
bottom diagram: the disentanglement losses (D1 and D2).

3. MODEL

Speech, like many sequential natural signals, can be decomposed
into the interaction of several largely-independent causal factors
which express themselves over different time scales. The central
observation that underpins our approach is that the speaker identity
affects fundamental frequency, pitch and volume at the utterance
level while linguistic content affects spectral contour and duration
of formants more locally.

Without labels, we have no way to directly separate these factors.
Instead, we can impose our prior knowledge as to how such represen-
tations should behave. Intuitively, representations of identity should
change slowly over time (remaining constant for a given speaker),
whereas representations of content should change quickly, capturing
the local variation in the speech signal. Concretely, we enforce
these properties by exploiting the known correspondence between a
speech signal and the face of its speaker within a facetrack to impose
three constraints on the representations for content and identity:

Content constraints. Within a given speaking facetrack, speech
and face signals extracted concurrently contain redundant (or
overlapping) linguistic content (while this information is trivially
available in the speech signal, it is perhaps less obvious that it is also
present in the face—in fact, it is this signal that enables lipreading).
By contrast, the face signal at a small temporal offset from the
speech signal is likely to convey different linguistic content. These
cues provide a natural source of paired data (positive and negative
examples) that we can use to learn a self-supervised representation
of linguistic content from a speech signal [5].

Identity constraints. By considering instead face and voice signals
across face tracks, we can obtain a different form of constraint:
signals from the same face-track should come from the same
speaker, while those from different face-tracks are likely to come
from different speakers. This idea was demonstrated in [24].



Disentangling constraint. Although representations that have
been trained to satisfy the intra-track and inter-track constraints
may capture a measure of both linguistic content and speaker
identity, there is no guarantee that both factors will be disen-
tangled (represented independently of one-another). To achieve
this last goal, we employ a further constraint on the speech
representations themselves, requiring that variation within one
factor cannot be predicted from the other to enforce their indepen-
dence.

Learning framework. In this work, we train a single model in
an end-to-end self-supervised manner to satisfy the constraints
described above (the framework is depicted in Fig. 2). In the next
section, we describe the architecture used for representation learning
and the losses that are used to implement these constraints. All
losses are across modalities.

3.1. Network Architecture

Our architecture consists of two sub-networks, one sub-network that
ingests five cropped faces as input, and another sub-network that
takes in short-term magnitude spectrograms of 0.2-second speech
segments. Each sub-network contains a block of five convolutional
layers as the basic feature extraction trunk (these are shared for
both content and identity, as it has been speculated that lower level
features, e.g. edges for images and formants for speech, are likely to
be common [26] for different high level tasks). Both sub-networks
are based on the VGG-M architecture [27] which strikes a good
trade-off between efficiency and performance. See [28] for the
exact filter sizes. After this, each block branches into two separate
fully connected layers, one that produces identity embeddings and
one that produces content embeddings, both of dimension 1024.
For N +4 input frames, N identity and content embeddings are
produced for each modality stream (Fig. 2), since both sub-networks
have temporal receptive fields of 5 frames (0.2 second) and strides
of 1 frame (0.04 second). During training, the identity vectors from
the audio stream are then averaged into a single vector, while a
single identity vector is selected from the face stream at random.
To understand this choice, note that if we were to also average the
face embeddings, then the task of matching identity representations
would simply become one of lip reading, i.e. matching the linguistic
content of the audio and visual signals. Hence we pick a single
random face vector and make the assumption that a face from a
single frame is insufficient to encode linguistic content.

Self-Supervised Paired Data Inputs. In a single minibatch, we
take B face-tracks, each of 1.2 seconds. Within a face-track, we
sample N + 4 consecutive face images and N + 4 temporally
aligned speech segments from the 1.2-second speech segment.
Hence the total number of input samples per batch is (N +4) x B
face images and (N +4) x B speech segments.

3.2. Loss Functions

A content loss (CL) is used to implement the content constraint
via a multi-way matching task, as described in [28]. The loss takes
one input feature from the visual stream and NV features from the
audio stream. Since only one of these audio features is a positive

sample (i.e. in sync with the visual stream), this can be set up as
any (IV)-way feature matching task. Euclidean distances between
the audio and video features are computed, resulting in N distances.
A cross-entropy loss is applied on the inverse of this distance after
passing through a softmax, encouraging the similarity between
matching pairs to exceed that of non-matching pairs.

An identity loss (IL) is used to implement the identity constraint.
It is similar in form to the content loss, but the negative samples
are now obtained from different tracks, as opposed to within a
track. The task becomes one of selecting the correct track averaged
identity speech representation for a single face representation from
all the B tracks in a batch, i.e. this is a B-way classification task.

Disentanglement losses (DL) are used to encourage explicit sep-
aration of representations—for this we use the confusion loss
implemented by [29] (inspired by [30]). This loss is used to assess
the amount of spurious variation information left in either feature
representation and then remove it (for the identity representation,
content information is a spurious variation and vice versa). Mini-
mizing this loss seeks to change the feature representation, such that
it becomes invariant to the spurious variations. To remove identity
from content, we perform the B-way identity matching task across
facetracks using the content vectors as input instead (D1 in Fig. 2).
We then minimise the cross-entropy between the output predicted
from the model and a uniform distribution. Similarly, we apply
the N-way content classification loss to the identity vectors and
minimise the cross-entropy with the output to a uniform distribution
(D2 in Fig. 2). See [29], Equations 1-3 for exact details.

4. EXPERIMENTS

We train our model using the following loss combinations: (1) Only
the content loss: in this case the identity streams are not present in
the network; (2) Using only the identity loss: in this case the content
streams are not present in the network; (3) Joint training with both
the content and the identity loss; (4) Joint training with the content,
identity and disentanglement losses. In all cases the model uses the
same trunk architecture and training hyperparameters.

Implementation Details. The model is implemented using Py-
Torch. It is trained end-to-end with batch size B =30 and N =30
samples per face-track using SGD (initial learning rate of 1e-2
which decays by 0.95 per epoch).

4.1. Dataset

We train our model on VoxCeleb2 [7], a large-scale audio-visual
dataset of interviews obtained from unedited YouTube videos. The
dataset consists of over a million utterances for 6,112 identities. No
identity labels are used during training. To reduce computational
cost, we sample only 20% of the speech per speaker for training
from the VoxCeleb dev set, and validate performance of the self-
supervised learning objectives on 120 speakers from the VoxCeleb2
test set. The statistics of the dataset can be seen in Table 1.

4.2. Evaluation

We first evaluate the performance of our model on the two self-
supervised learning objectives that it was trained for, and then



# face-tracks # identities
Training set 218,340 5,994
Test set 36,600 120

Table 1. Dataset Statistics. Although we report the no. of identities
in the dataset, the identities are not used at any point during training.

evaluate the learned representations on the downstream task of
speaker recognition on the standard VoxCeleb1 speaker recognition
benchmark.

Content Task Identity Task
N-waycls. B-waycls. EER
Random 3.3% 3.3% 50.0%
Content loss only 49.0% - -
Identity loss only - 443%  24.8%
Content Embeddings
Con. and Id. Loss 46.7% 8.5% 45.7%
Con., Id. and Dis. Loss 49.0% 105%  45.2%
Identity Embeddings
Con. and Id. Loss 19.3% 482%  23.1%
Con,, Id. and Dis. Loss 12.0% 49.6% 18.9%

Table 2. Results on the self-supervised training objectives. The
content task is N-way classification (/N = number of samples per
face-track), and the Identity task is B-way classification (B =
number of face-tracks per minibatch). With N = B =30, random
performance is 3.3%. Lower EER, higher cls. accuracy is better.
We want good performance of identity embeddings on the identity
task, and low performance on the content task.

Learning Objective. We evaluate the self-supervised learning
objectives on 120 speakers from the VoxCeleb2 test set (Table 1),
and the results can be seen in Table 2. We evaluate the learned
identity representations on the N-way classification task within
a facetrack (content task), as well as evaluating it on the identity
B-way classification task. From Table 2, it is clear that training
both self-supervised objectives jointly improves performance on
the identity classification task over training for identity alone (48.2
% vs 44.3 %) and training with the disentanglement losses provides
a further improvement (49.6 %). In order to further probe the effect
of the disentanglement losses, however, we look at the performance
of the identity embeddings on the content classification task (which
ideally it should perform poorly on). From Table 2, it can be seen
that disentanglement helps remove content information from the
identity embedding — the accuracy drops from 19.3 % to 12.0 %,
on the N-way content classification task.

As an aside, we also report performance of the content embed-
dings in the middle two rows of Table 2 (although learning content
representations for their own sake is not the objective of this work)
and note that joint training actually harms the performance com-
pared to training with the content loss alone (from 49.0% to 46.7%)
on the content classification task, however this performance is recov-
ered by adding in the disentanglement losses. This is to be expected,

as it is very difficult for identity information to leak into the content
representation when it is trained for content alone (the content objec-
tive is trained with a large number of negative pairs within the same
face-track, discouraging the embedding from learning identity).

Speaker Recognition. We then extract identity embeddings for
the data in the VoxCelebl fest set (VoxCeleb1-O, 40 speakers) [4].
We first evaluate using the self-supervised embeddings directly
(i.e. without any speaker identity labels at all), and report results
in Table 3. The negative cosine distance between embeddings
is calculated directly and used as the similarity score between
verification pairs. Once again we see a similar trend in the results,
both joint training and disentanglement show cumulative gains in
performance. We then compare our method to fully supervised
performance, by freezing the layers of our network and then
finetuning a single fully connected layer on the embedding network
with n-pair loss, using labels from the VoxCeleb1 dev set. We do
this for various subsets of the VoxCeleb1 dev set, and demonstrate
in Table 4 that up until 500 speakers, our self-supervised method
(even with only the identity loss, and with gains using the other two
losses) outperforms full supervision. The fully supervised baseline
is trained end-to-end, and for a fair comparison, has the exact same
architecture as the audio stream of the cross-modal model.

Method EER

Identity loss only 23.15%
Identity loss + Content loss 22.59%
Identity loss + Content loss + Dis. loss  22.09%

Table 3. Speaker verification results on the VoxCeleb1 test set.
Lower is better. EER: Equal Error Rate.

# speakers 100 250 500 1,211
# utterances 1,228 6,019 12,146 ALL
Id. loss only 15.05% 13.00% 11.16% 9.85%
Id.+Cont.+Dis. loss 14.33% 12.69% 10.94% 9.43%
Fully supervised 19.84% 13.60% 11.35% 7.28%

Table 4. Comparison to fully supervised performance on the Vox-
Celebl test set measured in EER. For the first two rows, a single
fully connected layer is trained on the self-supervised embeddings.
The fully supervised model is trained end-to-end with labels. Lower
is better.

5. CONCLUSION

In this work we develop a self-supervised method that learns
speaker recognition embeddings from speech without access to any
training labels, simply by using the co-occurence of faces in video.
By explicitly disentangling factors of variation such as content
and identity, and training for both objectives with a common trunk
architecture, we show improvements in generalisation to unseen
speakers, and in the case of small amounts of training data, even
outperform fully supervised methods.
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