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ABSTRACT

Spectral graph filters are a key component in state-of-the-art machine
learning models used for graph-based learning, such as graph neural
networks. For certain tasks stability of the spectral graph filters is
important for learning suitable representations. Understanding the
type of structural perturbation to which spectral graph filters are ro-
bust lets us reason as to when we may expect them to be well suited
to a learning task. In this work, we first prove that polynomial graph
filters are stable with respect to the change in the normalised graph
Laplacian matrix. We then show empirically that properties of a
structural perturbation, specifically the relative locality of the edges
removed in a binary graph, effect the change in the normalised graph
Laplacian. Together, our results have implications on designing ro-
bust graph filters and representations under structural perturbation.

Index Terms— Graph signal processing, spectral graph filters,
stability analysis

1. INTRODUCTION

In a multitude of different fields, one may be tasked with the anal-
ysis of data which naturally resides in a graph-structured domain.
Modern machine learning techniques are not well suited to handle
this raw data as input. As a practical example, consider a social
network where users are represented by nodes in a graph and edges
between users represent a social connection. Given access to infor-
mation about the users, and the knowledge of how a small number
of the users plan to vote in an election, can we learn to predict how
other users will vote? A natural framework for this learning task is
graph-based semi-supervised learning [1]. An explicit assumption
in this example is the homophily principle which states that individ-
uals tend to associate themselves with others who are similar [2],
hence voting tends to be similar between connected individuals. Re-
cently, graph signal processing has emerged as a field which extends
high dimensional data analysis to graph-structured data [3]. One of
the challenges in graph signal processing is to adapt ideas from the
signal processing literature and to generalise them to signals which
reside in a graph-structured domain.

A fundamental operation in the analysis and transformation of
signals is filtering. Filtering amplifies or attenuates frequencies of
the input signal by performing pointwise multiplication of the signal
in the frequency domain with a so-called transfer function evaluated
at the frequencies. This idea can be generalised to filtering of sig-
nals in a graph-structured domain. The challenge then is to define
a suitable frequency domain for signals defined on graphs. Recent
advances in spectral graph theory and graph signal processing pro-
vide us with a notion of a frequency domain on graphs via the graph
Fourier transform. The graph Fourier transform helps define the con-
cept of a filtering operation as well as convolution for signals defined
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on graphs [3]. This enables the design of efficient graph representa-
tion learning models, such as graph neural networks [4].

When utilising spectral graph filters for learning representations
a necessary condition for transferability in certain tasks is stability.
Stability can be loosely defined to be the property such that if we add
a small perturbation to the input graph, the output of the filter is also
perturbed by a small amount. In the given semi-supervised learning
example, small changes to people’s social circles is unlikely to dras-
tically change the way they vote. Based on this reasoning, if we use
graph filters as part of an end-to-end graph-based classification sys-
tem we would desire the property of stability. However, bounding
the change in filter output by the absolute change in a graph matrix,
e.g., the normalised graph Laplacian, may not be desirable as the lat-
ter is not always a natural or interpretable metric of change. In the
social network example, a more natural unit of change is the addition
or deletion of an edge (a friendship). Given a structural perturbation
to a graph under a fixed budget, e.g., number of edges allowed to be
changed, it is possible to observe different magnitudes of change in
the normalised Laplacian matrix of the graph.

Our first contribution in this work is to show that polynomial
spectral graph filters are stable, by proving that the change in the out-
put of the filters is linearly bounded by that in the normalised graph
Laplacian matrix. This result is similar to a recent work of Levie et
al. [5] which proves that spectral graph filters in the Cayley smooth-
ness space (which includes polynomial filters) are linearly stable, but
does not require the perturbations to be sufficiently small as in their
case. Gama et al. [6] study as well the stability of convolutional
graph neural networks using spectral graph filters for convolutional
layers. However, compared to our work, they consider a different
metric to measure the distance between two graphs. Our work con-
stitutes another approach to stability analysis of spectral graph fil-
ters, and contributes more generally to the existing literature on ro-
bustness of graph signal processing and graph analysis tools [7], [8],
[9], [10]. Our second contribution is to make the first step towards
demonstrating the importance of understanding the structure of per-
turbation in the graph, by showing empirically that the change in the
normalised graph Laplacian, given a fixed budget of edge removals,
is affected by the relative locality of these edges in the graph. We
believe that the combination of these two lines of investigation will
pave the way to designing more stable graph filters in light of the
nature of the structural perturbation in the graph, with implications
in scenarios such as adversarial attacks and defence [11].

2. PRELIMINARIES

We consider an undirected graph without self loops G = (V, E ,W)
with n = |V| vertices and m = |E| edges and an adjacency matrix
W. The non-zero entry of the adjacency matrix Wij denotes the
weight of an edge {i, j} ∈ E . For binary weighted graphs the de-
gree du of the node u is the number of nodes adjacent to u. A node
with degree 0 is called an isolated node. The k-hop neighbourhood



of a node u in a graph is the set of all nodes which can be reached
from u via a path of at most k edges. The normalised Laplacian
matrix of a graph is defined to be L(G) = In − D−1/2WD−1/2

where In ∈ Rn×n is the n × n identity matrix and D is a diagonal
matrix with Dii = di. As the normalised Laplacian is a real sym-
metric matrix, it admits an eigendecomposition L = UΛUT . Here
Λ = diag(λ0, λ1, . . . λn−1) is the diagonal matrix of real eigen-
values of L in increasing order and U = [u0,u1 . . . ,un−1] is the
orthonormal matrix of corresponding eigenvectors as columns. It is
a well known result that the eigenvalues are contained in the interval
[0, 2] with λ0 = 0, and λn−1 = 2 if and only if G is bipartite [12].

A signal on a graph is a function x : V → R that can be com-
pactly represented as a vector ∈ Rn with i representing the signal
value of node i. The graph Fourier transform of a graph signal is
defined asˆ= UT and the inverse graph Fourier transform is given
by Û. Filtering in graph signal processing can be defined as operat-
ing in the frequency domain using a smooth transfer function g(λi)
which amplifies or attenuates each of the frequency components ui
of the graph signal. Computing the eigendecomposition explicitly
is prohibitively expensive for large graphs; however, we can instead
operate directly on the normalised Laplacian matrix:

U diag(g(λ0), . . . , g(λn−1))UT = g(L),

to obtain an equivalent result. For diagonalisable matrices this is one
of the multiple equivalent definitions of matrix functions [13].

An order K polynomial graph filter applied to the normalised
graph Laplacian matrix L and graph signal is computed as so:

gθ(L) =

K∑
k=0

θkLk,

where θ = (θ0, . . . , θK) ∈ RK+1 are the parameters of the filter.
The graph filter gθ : Rn×n → Rn×n is a matrix-valued function. A
scaling of the normalised Laplacian matrix can be used to ensure that
the eigenvalues lie in the range [−1, 1] to improve numerical stabil-
ity of the filtering operation. In [14] the scaled normalised Lapla-
cian is defined to be 2L/λn−1 − In. In [15] the simpler scaling of
L̃ = L− In was used which does not require calculating the largest
eigenvalue of the normalised Laplacian matrix. We will adopt the
latter of these two scalings and refer to this matrix as the scaled nor-
malised Laplacian matrix.

3. STABILITY OF POLYNOMIAL FILTERS

In this section, we prove that polynomial graph filters are stable. In
particular, we state that a spectral graph filter g is (linearly) stable if

‖g(L)− g(Lp)‖2 ∈ O
(
‖L − Lp‖2

)
, (1)

where Lp represents the normalised Laplacian of the perturbed input
graph and ‖A‖2 is the operator norm of a matrix A. We call the left
hand side of Eq. (1) the filter distance, and ‖L − Lp‖2 the Laplacian
distance.

We begin by motivating why we wish to bound the filter dis-
tance. Assume the signal is non-zero. Consider the relative output
distance of a polynomial graph filter gθ relative to some perturbation

‖gθ(L)− gθ(Lp)‖2
‖‖2

,

where L is the input normalised graph Laplacian and Lp is the nor-
malised graph Laplacian of the perturbed graph. In our setup, we
assume that the signal parameters and the input signal are fixed.

We can see that by definition the relative output distance is
bounded by the filter distance

‖gθ(L)− gθ(Lp)‖2
‖‖2

≤ sup
6=0

‖gθ(L)− gθ(Lp)‖2
‖‖2

,

def
= ‖gθ(L)− gθ(Lp)‖2 .

The looseness of this bound depends on the signal in relation to
where the perturbation is taking place in the graph.

The simplest case to consider is the first order polynomial graph
filter (i.e., K = 1) where ‖gθ(L)− gθ(Lp)‖2 = |θ1| ‖L − Lp‖2 .
Thus, the output distance is proportional to the Laplacian distance.

3.1. Higher-order filters

We now consider higher-order polynomial filters. We prove that the
filter distance is bounded above by some constant times the Lapla-
cian distance, where the constant depends on the filter parameters.
To do so, we will use Taylor’s Theorem for matrix-valued functions
where the magnitude of the remainder term under the 2-norm gives
us exactly the filter distance. We will then bound the remainder term
to show our main result. We begin by stating Taylor’s theorem for
matrix-valued functions.

Theorem 1 (Theorem 2.2, [16]). Let f have a power series expan-
sion about the origin with radius of convergence r and let D ⊂ C
be a simply connected open set within the circle of radius r centred
at 0. Let A,E ∈ Cn×n be such that Λ(A),Λ(A + E) ⊂ D. Then
for any k ∈ N

f(A + E) = Tk(A,E) +Rk(A,E), (2)

where

Tk(A,E) =

k∑
j=0

1

j!
D

[j]
f (A,E),

Rk(A,E) =

1

2πi

∫
Γ

f(z)(zIn −A−E)−1 [E(zIn −A)−1]k+1
dz,

and Γ is a closed contour in D enclosing Λ(A) and Λ(A + E).

In the theorem, the terms

D
[j]
f (A,E) =

dj

dtj

∣∣∣∣
t=0

f(A + tE)

denote the jth order Fréchet derivatives [17]. The term Rk(A,E)
in Eq. (2) is the remainder term in the Taylor expansion which the
following Lemma provides an analytic bound for.

Lemma 1 (Lemma 3.1, [16]). Let f and D satisfy the criteria of
Theorem 1. Furthermore, let ε > 0 be such that Λε(A) ⊂ D and
Λε(A + E) ⊂ D, and take Γ̃ε ⊂ D to be a closed contour that
encloses both Λε(A) and Λε(A + E). Then the remainder term
Rk(A,E) is bounded by

‖Rk(A,E)‖ ≤ ‖E‖
k+1L̃ε

2πεk+2
max
z∈Γ̃ε

|f(z)|,

where L̃ε is the length of Γ̃ε. In particular, when a circular contour
centred at 0 is used,

‖Rk(A,E)‖ ≤ ‖E‖
k+1ρ̃ε
εk+2

max
φ∈[0,2π]

∣∣∣f (ρ̃εeiφ)∣∣∣ , (3)



where ρ̃ε = max {|z| : z ∈ Λε(A + E) ∩ Λε(A)} is the radius of
the circle.

In the above lemma, Λε(X) =
{
z ∈ C :

∥∥(zIn −A)−1
∥∥ ≥ ε−1

}
is the ε-pseudospectrum of a matrix X ∈ Cn×n [18].

The following lemmas will be used to further bound the remain-
der term given in Eq. (3). The proofs are given in Appendix A.

Lemma 2. Let f(z) be a complex polynomial of degreeK, if |z| ≥ 1
then

|f(z)| ≤ |z|K max
φ∈[0,2π]

|f(eiφ)|.

Lemma 3. Let K ≥ 2 then

min
ε>0

(1 + ε)K+1

ε2
=

1

4
(K2 − 1)

(
K + 1

K − 1

)K
.

We now use the above developments to state and prove the main
result of this section.

Theorem 2. Consider a polynomial graph filter of order K:

gθ(L) =

K∑
k=0

θkL̃k,

where θ ∈ RK+1 are the polynomial coefficients and L̃ is the scaled
normalised Laplacian of an input graph. Consider perturbing the
graph and let the Laplacian of the perturbed graph be Lp. Then the
following holds:

‖gθ(L)− gθ(Lp)‖2 ≤

1

4
‖θ−0‖1 (K2 − 1)

(
K + 1

K − 1

)K
‖L − Lp‖2 ,

where θ−0 = (θ1, . . . , θK) is the vector of polynomial coefficients
for all terms apart from the constant term, with the 1-norm of a vec-
tor is defined as ‖‖1 =

∑
i |i|.

Proof. We proceed by applying Theorem 1 to our polynomial graph
filter. Polynomial functions have an infinite radius of convergence
so we may take D = C. According to Eq. (2) with k = 0 we get

gθ(Lp)− gθ(L) = R0(L,Lp − L).

Under the 2-norm, the ε-pseudospectrum Λε(A) of a normal ma-
trix A is the union of open balls of radius ε around the eigenval-
ues of A [18, Theorem 2.2]. In particular, if a point lies in the
ε-pseudospectrum of a scaled normalised Laplacian matrix, it is at
most distance ε from some point in [−1, 1]. Thus, by the triangle
inequality all points in the ε-pseudospectrum are at most distance
1 + ε from the origin. Using this, we can bound the remainder term
by Lemma 1 using Eq. (3) using a circle contour of radius 1 + ε
centred at 0. This gives us that

‖gθ(L)− gθ(Lp)‖2 ≤
‖L − Lp‖2 (1 + ε)

ε2
max

φ∈[0,2π]
|gθ((1+ε)eiφ)|.

By taking z = (1 + ε)eiθ in Lemma 2 we get

‖gθ(L)− gθ(Lp)‖2 ≤
‖L − Lp‖2 (1 + ε)K+1

ε2
max

φ∈[0,2π]
|gθ(eiφ)|.

Since ε is an arbitrary non-negative scalar value, we may minimise
the right hand side with respect to ε. By Lemma 3 we get

‖gθ(L)− gθ(Lp)‖2 ≤

1

4
(K2 − 1)

(
K + 1

K − 1

)K
‖L − Lp‖2 max

φ∈[0,2π]
|gθ(eiφ)|.

We give a naive upper bound to the magnitude of the polynomial
over the unit circle by noting that for all φ ∈ [0, 2π] we have that

|gθ(eiφ)| = |
K∑
k=0

θke
iφk| ≤

K∑
k=0

|θk||eiφk| = ‖θ‖1 . (4)

Finally, note that the θ0In terms cancel out in the calculation of
gθ(L) − gθ(Lp) so we may, without loss of generality, assume θ0

is zero. Using this observation, combined with the bound given in
Eq. (4), we obtain the result.

Theorem 2 shows that the difference between the outputs of two
polynomial filters is bounded by a quantity which scales linearly
with the Laplacian distance, hence proves the stability of polyno-
mial spectral filters. Empirically, however, we found this bound to
be quite loose and the development of practical bounds is an open
research direction.

4. IMPORTANCE OF STRUCTURAL PERTURBATION

Theorem 2 bounds the filter distance by the Laplacian distance.
However, absolute change in the graph Laplacian is not a quantity
that is easy to interpret, in the sense that it does not provide any
insight into the actual structural perturbation of the graph. Further-
more, different structural perturbation under a fixed budget can lead
to different magnitudes of change in the Laplacian. For example,
considering perturbing undirected binary graphs by removing a fixed
number of edges, the locality of these edges in the graph would lead
to different Laplacian distance.

Our intuition for this is guided by the way the entries of the
Laplacian matrix change under perturbation of the graph topology.
Note that if the edges are sufficiently far apart, the changes in the
matrix incurred by each edge removal is likely to be independent.
However, if two edges are close then an entry may change due to
both edge removals. Based on the same intuition of considering the
change of entries of the Laplacian matrix, we expect the degree of
the endpoints of the edges we remove to also play a role. We leave
further investigation of this as future work.

To quantify the relative locality of a set of edges, we propose the
following definition.

Definition 1. A set of edges R ⊆ E is k-hop localised in a graph
G = (V, E) with respect to a node v ∈ V if the edge set of the graph
induced by the k-hop neighbourhood of v contains all edges inR.

In this paper, we empirically test the effect of relative locality of
edge removals in affecting the change in the normalised graph Lapla-
cian, under different types of random graph models. We present
these results in the following section.

5. EXPERIMENTS

We begin this section by showing that the filter distance empirically
scales linearly with the Laplacian distance in line with the result of
Theorem 2. We then test our hypothesis that the locality of edges
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Fig. 1: A plot of the Laplacian distance and the filter distance for
different order polynomial filters. The bars indicate the standard de-
viation of the filter distance.

being removed affects the magnitude of the Laplacian distance as
discussed in Section 4. Code for reproducing the results in this sec-
tion is available online1.

To demonstrate the O(‖L − Lp‖2) property of the result of
Theorem 2 we consider the following experimental setup. We gen-
erate Barabási-Albert graphs with n = 200 nodes and randomly
remove each edge with independent probability of 0.5 to give a
perturbed graph [19]. We only consider perturbations which do
not disconnect the graph. We then look at the filter distance for
low pass polynomial filter of order K ∈ {1, 2, 3}. The results are
shown in Fig 1. The filter distance can be seen to scale linearly with
the Laplacian distance consistent with Theorem 2 which states that
polynomial filters are linearly stable.

To test the effect that the locality of edge removals has on the
Laplacian distance we conducted repeats of the following experi-
ment. We perturbed a graph by randomly selecting a node and re-
move a fixed number of edges in the k-hop subgraph around that
node. We also considered removing edges uniformly at random (we
say in this case the edges are∞-hop localised). We only consider an
experiment valid if the graph remains connected. We consider two
random graph models. The first random graph model we consider is
the Barabási-Albert random graph model with n = 500 where we
connect a node with 3 edges at each step of the network generation.
The second random graph model we consider is a sensor network
model. Synthetic sensor networks are generated by uniformly sam-
pling n = 500 points in the unit square and connecting nodes which
are under some threshold distance. The settings of these experiments
are summarised in Table 1; obtained results are illustrated in Fig. 2.

In the experiments, we see that as we increase the size of the
neighbourhood, the median Laplacian distance is reduced. The ef-
fect is more pronounced for the sensor network graph. We believe
this is due to the sensor networks greater diameter, leading the per-
turbations under different k-hop neighbourhoods to be more distinct.

Table 1: Summary statistics of the graphs used in experiments

Barabási-Albert Sensor network

Number of edges m 1491 2724-3130
Diameter 5-6 18-24
Edges removed 74 (5%) 136-156 (5%)

1https://github.com/henrykenlay/spgf.
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Fig. 2: Varying effects of removing a fixed percentage of edges with
different localisation.

6. CONCLUSION

In this work, we proved that polynomial graph filters are linearly
stable with respect to the change in the normalised Laplacian. Fur-
thermore, we have demonstrated empirically how the distribution of
the observed Laplacian distance can change under a fixed structural
perturbation budget. Further research is required to develop a theo-
retical understanding of how the normalised Laplacian changes un-
der structural perturbation. In future work, we hope to understand
how stability of graph filters with respect to the underlying topology
can effect the robustness of graph-based representations and models,
e.g., the ones that utilise graph filters in a learning setting such as
graph neural networks [4].

A. PROOFS OF LEMMAS

A.1. Proof of Lemma 2

Proof. The function zKf(1/z) is holomorphic in the disk |z| ≤
1 and thus reaches its maximum on the boundary |z| = 1 by the
maximum modulus principle. For |z| ≤ 1,

|zKf(1/z)| = |z|K |f(1/z)| ≤ max
|z|=1

f(1/z) = max
|z|=1

f(z). (5)

Now, let w be so that |w| ≥ 1 then z = w−1 is inside the unit disk.
Using Eq. (5) we get

|w|−K |f(w)| = |z|K |f(1/z)| ≤ max
|z|=1

f(z). (6)

Multiplying the inequality by |w|K yields the result.

A.2. Proof of Lemma 3

Proof. Taking the derivative of the expression with respect to ε we
get

∂

∂ε

(1 + ε)K+1

ε2
=

(1 + ε)K((K − 1)ε− 2)

ε3

which has a unique zero in the positive reals given by ε∗ = 2/(K −
1). The second derivative is calculated to be

∂2

∂ε2
(1 + ε)K+1

ε2
=

(K2 − 3K + 2)ε2 − 4(K − 2)ε+ 6

ε4(ε+ 1)1−K .

It can be verified that this is strictly positive when evaluated at ε∗.
By plugging ε∗ into the original expression we obtain the result.

https://github.com/henrykenlay/spgf
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tacks on neural networks for graph data,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, July 2018, KDD ’18, pp. 2847–
2856.

[12] F. Chung, Spectral graph theory, American Mathematical So-
ciety, 1997.

[13] N. J. Higham, Functions of Matrices: Theory and Computa-
tion, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2008.

[14] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolu-
tional neural networks on graphs with fast localized spectral
filtering,” in Advances in Neural Information Processing Sys-
tems 29, 2016, pp. 3844–3852.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in International Confer-
ence on Learning Representations (ICLR), 2017.

[16] E. Deadman and S. D. Relton, “Taylor’s theorem for matrix
functions with applications to condition number estimation,”
Linear Algebra and its Applications, vol. 504, pp. 354–371,
Sept. 2016.

[17] N. J. Higham and S. D. Relton, “Higher order fréchet deriva-
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