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ABSTRACT

In Financial Signal Processing, multiple time series such as financial
indicators, stock prices and exchange rates are strongly coupled due
to their dependence on the latent state of the market and therefore
they are required to be jointly analysed. We focus on learning the re-
lationships among financial time series by modelling them through a
multi-output Gaussian process (MOGP) with expressive covariance
functions. Learning these market dependencies among financial se-
ries is crucial for the imputation and prediction of financial observa-
tions. The proposed model is validated experimentally on two real-
world financial datasets for which their correlations across channels
are analysed. We compare our model against other MOGPs and the
independent Gaussian process on real financial data.

Index Terms— finance, Gaussian process, co-movement, stock
market, time-series, cross-correlation

1. INTRODUCTION

Financial applications of artificial intelligence research has become
an area of rapid development that strives to forecast financial indi-
cators and performance metrics using machine learning (ML) with
promising results [1, 2, 3, 4]. Traditionally, financial indicators have
been modelled using ARCH or GARCH models [5, 6, 7]. More
recently, flexible ML-based models have been constructed with ap-
plications to financial data [8, 9, 10].

The movement of two (or more) financial indicators such as
stocks and commodities in a similar fashion (also called co-move-
ment) can be caused (i) by their mutual dependence, (ii) through
changes in the same external factors that influence its price (e.g. po-
litical announcements, natural events, etc.), or (iii) through influ-
ences from a more complex economic system [11, 12, 13]. In any
case, discovering these relationships is crucial for investors, finan-
cial experts, and for better understanding the market. The under-
lying economic principles can be hard to model as these systems
are rather complex. Therefore, automatic discovery of those rela-
tionships through ML may be instrumental to provide novel market
insights previously unknown, as well as to confirm present conjec-
tures. This improved understanding of the interdependence among
financial indicators can greatly aid financial planning for companies
and policy makers alike.

By jointly modelling financial time series as multi-output Gaus-
sian processes (MOGPs) with rich kernel functions [8, 9, 10], we aim
to discover features that are inherent to the data such as quarterly or
yearly patterns or business cycles. In particular, by parametrising the
positive/negative correlations between two or more time-series, the
interdependence among multiple financial indicators can be trained
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so that a variation in one time-series can predict the movement in an-
other time-series. Given sufficient data and the availability of recur-
ring effects (i.e. patterns), we expect to construct sound predictions
of one time-series channel given the others.

In the rest of the paper we will first review classical and multi-
output frameworks for Gaussian processes regression. Then in Sec-
tion 3 we specify the multi-output spectral mixture kernel (MOSM)
and related models. In Section 4 we show the application of MOGPs
to two finance experiments, namely the gold, oil, NASDAQ, and
USD index dataset and the currency exchanges of ten countries with
respect to the USD. Finally, we discuss the results in Section 5.

2. BACKGROUND: MULTI-OUTPUT GP

A Gaussian process (GP) [14] defines a non-parametric prior dis-
tribution over functions f(x) ∼ GP(m(x), k(x, x′)), where m(x)
is the mean function (usually assumed to be zero) and k(x, x′) is
the covariance (kernel) function. GPs can be used as a generative
model for functions within Bayesian inference, therefore, data can
be used to compute a predictive posterior distribution of unseen val-
ues of f(·). The kernel function k dictates the behaviour of the mod-
elled function, such as its periodicity and smoothness, and encodes
knowledge of the time series of interest via its functional form and
parameters. The choice of kernel is central in the GP framework
with the radial basis function the de facto choice due to its smooth-
ness properties [15]. However, other more expressive yet more com-
plex kernels have recently been considered that model, for example,
periodicities [16, 17, 18, 19].

Although the GP’s literature both on methods and applications
is broad, most of the works address the single-output scenario when
only one time series is considered, that is, a function f : RN →
R. The extension of the GP approach to multiple signals allows
for jointly modelling M output channels as coupled GPs, where
the covariance function is a function K(x, x′) : RN × RN →
RM×M , with M the number of channels, defined element-wise as
[K(x, x′)]ij = kij(x, x

′) between channels i and j. The key feature
of a multi-output GP is to model covariation across channels in ad-
dition to the standard temporal covariation handled by single-output
GPs. One of the main challenges of MOGP models is designing flex-
ible covariance functions while requiring the covariance function to
be positive definite for all values of x [14]. Additionally, since an
MOGP model would require parametrisation of a larger number of
correlations, its increased amount of hyperparameters results in an
increase in local minima and thus makes training more difficult.

A recent approach to design general and meaningful cross-
channel covariances for MOGPs is to construct them in the spectral
domain, that is, to parametrise their (cross) power spectral densi-
ties. An alternative is to consider a mixture of Gaussians as was
originally proposed by Wilson 2013 [17] for the single channel
case. Developments in the field of multi-output and spectral mixture
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kernels have led to a range of new covariance functions such as the
SM-LMC [20, 21], CSM [18], and the MOSM [19]. The SM-LMC
kernel introduces multi-output interpretations by linearly combining
the channels and thus learning cross-channel covariances. These
covariance are, however, restricted to have similar behaviour across
the channels. A more flexible kernel is the CSM kernel which ad-
ditionally models the phase differences across channels, allowing
for non-symmetric covariance functions but still requiring strong
correlation between channels. The MOSM kernel adds even more
flexibility by introducing a time delay factor across channels that
allows for delayed influences across channels to be modelled effec-
tively.

3. MODEL SPECIFICATION

Let us establish the required notation. We define (single-output) GPs
operating on input x as

f(x) ∼ GP(m(x), k(x, x′)),

where the mean function m(x) and covariance function k(x, x′) be-
tween inputs x and x′ [14] are respectively defined by

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

= cov(f(x), f(x′)) .

We say that a kernel is stationary if it can be expressed as

k(x, x′) = k(x− x′),

where for convenience of notation, we denote the input lag τ =
x− x′ and will usually refer to stationary kernels simply as k(τ).

Using Bochner’s theorem [22, 23] we can describe any station-
ary covariance function k(τ) and its spectral density S(ω) to be
Fourier pairs respectively defined as [14]

k(τ) =

∫
S(ω) exp (2πiω · τ) dω

S(ω) =

∫
k(τ) exp (−2πiω · τ) dτ .

Using these Fourier pairs, we can specify (or parametrise) a ker-
nel in the frequency space by only requiring it to be positive since
Bochner’s theorem guarantees that the corresponding covariance
function is always positive-definite. We can subsequently use a
mixture of Q Gaussian radial basis functions (RBF) in frequency
space with positive weights to yield the spectral mixture kernel [17]

k(τ) =

Q∑
q=1

wq exp

(
−1

2
τ>Σqτ

)
cos(µ>q τ) , (1)

with µq ∈ RN , Σq = diag(σ
(q)
1 , . . . , σ

(q)
N ), and wq, σ

(q)
i ∈ R+.

The kernel defined in Eq. 1 we refer to as the spectral mixture in-
dependent Gaussian process kernel (SM-IGP), as we will use it to
model the outputs independently.

In order to extend the spectral mixture kernel into a multi-output
kernel, we use Cramér’s theorem [24], which is the multivariate ex-
tension of Bochner’s theorem, to obtain the multi-output spectral

mixture kernel (MOSM) as proposed by [19]. The MOSM kernel
between channels i and j at input lag τ is defined as

kij(τ) =

Q∑
q=1

α
(q)
ij exp

(
−1

2

(
τ + θ

(q)
ij

)>
Σ

(q)
ij

(
τ + θ

(q)
ij

))

· cos

((
τ + θ

(q)
ij

)>
µ
(q)
ij + φ

(q)
ij

)
, (2)

with the cross-spectral parameters defined by α(q)
ij the magnitude,

µ
(q)
ij the mean, Σ

(q)
ij the covariance, θ(q)ij the delay, and φ

(q)
ij the

phase. The channels are defined by indices i and j. For a detailed
derivation of the MOSM kernel see [19].

MOSM can be understood as a more general kernel when com-
pared to the SM-IGP, SM-LMC, and CSM kernels which can be ob-
tained by constraining some of the parameters in Eq. (2). This is
illustrated in Table 1, where both the mean µ and covariance Σ be-
come channel independent, where either the delay θ, phase φ, or
both are set to zero, and where the magnitude parameter α is scaled.
Some MOGP kernels explicitly state an Rq for every q ∈ 1, . . . , Q,
which uses a weighted average ofRq covariance functions perQ. In
this paper we use Rq = 1.

4. MOGP FOR FINANCIAL TIME SERIES

This section implements and validates the above mentioned ker-
nels on multi-channel financial time series. The experiments were
performed using the multi-output Gaussian process toolkit1 (MOG-
PTK) [25], which contains a number of MOGP kernels and pre-
training procedures. MOGPTK builds on GPFlow [26], which is
in turn is backed by TensorFlow [27] and thus allows for automatic
differentiation and the use of GPUs for computations (we used an
8GB Nvidia GeForce GTX 1080). All experiments were performed
by 5 trials per trained model. Parameter initialisation for all MOGP
kernels was achieved by estimating the power spectral density (PSD)
of each channel using Bayesian non-parametric spectral estimation
(BNSE) [28] and obtaining its peaks as the means of the spectral rep-
resentation. The optimisation relied on L-BFGS-B with a maximum
of 5000 iterations.

The experiment aims are as follows: the first experiment models
the correlation among gold, oil, NASDAQ, and the USD. The second
experiment correlates ten currency exchanges with the USD.

4.1. Gold, Oil, NASDAG, and USD index

We considered the co-movement and interdependence among gold,
oil, stock markets, and the USD. It is known that gold can be used
to offset losses in other assets such as declining currencies, espe-
cially against USD depreciation [29], and therefore are expected to
correlate in some fashion. On the other hand, oil and the value of
the USD are linked as the price of a barrel of oil is globally ex-
pressed in USD. The value of the USD has shown to behave (albeit
weakly) correlated with oil, especially after the global financial cri-
sis of 2008 [30, 31]. Additionally, any fluctuation in the price of
crude oil will affect economies and supply chains that are energy
dependent [32, 33]. We represent these market effects through the
NASDAQ Composite index as it covers a broad number of (mostly
information technology) companies. Using these four financial se-
ries, which have been observed to influence one another, we can

1https://github.com/GAMES-UChile/mogptk

https://github.com/GAMES-UChile/mogptk


Model Parametric relation with MOSM

SM-IGP [17] α
(q)
ij = ωiδij µ

(q)
ij = µq Σ

(q)
ij = Σq θ

(q)
ij = 0 φ

(q)
ij = 0

SM-LMC [20, 21] α
(q)
ij = ω

(q)
ij µ

(q)
ij = µq Σ

(q)
ij = Σq θ

(q)
ij = 0 φ

(q)
ij = 0

CSM [18] α
(q)
ij =

√
ω

(q)
ij µ

(q)
ij = µq Σ

(q)
ij = Σq θ

(q)
ij = 0 -

Table 1. MOGP kernels as particular cases of MOSM. Channel indices are denoted by i, j ∈ {1, . . . ,M}, and δij denotes the Kronecker
delta between channels i and j. The MOSM kernel is shown in eq. (2) and the SM-IGP, SM-LMC, and CSM kernels can be recovered
applying the above constraints.

model the global underlying economic tendencies that affect these
commodities and indicators.

We considered a dataset comprising series of gold and oil
prices, the NASDAQ and the USD index (henceforth referred to
as GONU) [34, 35, 36, 37], between January 2017 and December
2018 with a weekly granularity. We detrended and log-transformed
the data signals and removed regions in each channel to mimic
missing data. For oil we removed observations between 2018-10-
05 and 2018-12-31 as well as removing 30% of all observations
randomly. For gold we removed observations between 2018-07-01
and 2018-10-01. Finally, for the gold, NASDAQ and USD channels
we removed 60% randomly. Overall, our experiment consisted of
385 training points and 446 test points resulting in roughly five
minutes of training time for the MOSM. We also set a Gaussian
prior on the covariance magnitudes with the standard deviation of
the hyperparameter set to the maximum value of each channel.
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Fig. 1. GONU data set with the trained MOSM kernel. Training
points are shown in black, dashed lines are the ground truth and the
colour coded lines are the posterior means. The coloured bands show
the 95% confidence intervals. The red shaded areas mark the data
imputation ranges.

Fig. 1 shows a fit of the MOSM kernel. The MOSM model is
able to encapsulate the structure of the channels with almost all data
within the confidence interval of 95%, even for parts that have miss-
ing data but with a deviating imputation for NASDAQ. The related
cross-correlation matrix is plotted in Fig. 2. Notice that the empir-
ical cross-correlation matrix is showing correlation between gold,
oil, and NASDAQ, with especially a strong dependency between oil
and NASDAQ thus confirming our hypothesis. The hedging qual-
ity of gold can also be seen (albeit faintly) with the negative cross-
correlation between gold and the USD index.

Our trained MOSM kernel is recovering the more significant de-
pendencies such as the oil and gold correlation and the oil and NAS-
DAQ correlation. In Fig. 1 these curves follow similar behaviour,
especially for oil and the NASDAQ this is apparent. The USD is
found to correlate more negatively with the other channels, as well
as gold and the NASDAQ. It should be noted that the MOSM finds
correlations by minimising the negative log-likelihood (NLL), where
if three channels correlate, the model could find correlation between
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Fig. 2. Cross-correlation matrix of the GONU data set (with miss-
ing data) among the channels of the trained MOSM by evaluating
the (normalised) kernel (Eq. 2) at τ = 0 (left) and the empirical
cross-correlation of the full data set (right). The off-diagonal ele-
ments show how much two currencies are aligned or anti-aligned, or
whether they are unaligned and have negligible correlation.

the first and second, and between the second and third channels, but
not necessarily between the first and third, explaining the discrepan-
cies between kernel and empirical cross-correlations. Furthermore,
the MOSM only uses part of the data, and depending on the number
of parameters and training it may not find all correlations. Table 2
(left) shows error values of the test set comparing different models
against the MOSM.

4.2. Exchange Rates

Much like the GONU data set, the movement of exchange rates
among large currencies is due to international market changes and
national macro economic factors. Exchange rates are heavily in-
fluenced by inflation and interest rates, trade and economic perfor-
mance. We chose ten exchange rates against the USD, namely the
AUD, CAD, CHF, EUR, GBP, HKD, JPY, KRW, MXN, and NZD
using a daily granularity with data ranging from 2017-01-01 to 2017-
12-31. For all the channels, 30% of the data points have been re-
moved randomly. All channels have the last 40 days removed except
for EUR, JPY, and AUD. The EUR, JPY, and AUD thus act as ref-
erence channels to predict the other currency exchanges. For some
channels an additional range has been removed to simulate miss-
ing data. Overall, we used 1535 training points and 955 test points,
where each trial took roughly 60 minutes per trial for the MOSM.

Fig. 3 shows the currency exchange data set with a fit of the
MOSM kernel. We see that the predicted posterior means at the
removed tails follow the data quite closely. A possible reason why
one channel can recover missing data better while other channels
have difficulty doing so, lies in the fact that a strongly correlating
channel is needed to impute the data. Notice that since the MOSM
is a covariance-driven model, the EUR, JPY, and AUD channels can



Gold, Oil, NASDAQ, USD index Currency exchange rates
Model nMAE (10−2) nRMSE (10−2) nMAE (10−3) nRMSE (10−3)

SM-IGP [17] 2.817± 0.000 5.071± 0.000 5.478± 0.000 7.481± 0.000
SM-LMC [20, 21] 2.5± 0.4 3.4± 0.6 6.6± 0.5 8.9± 0.6
CSM [18] 1.88± 0.02 2.44± 0.06 8± 1 10± 2
MOSM [19] 1.8± 0.1 2.6± 0.4 4.8± 0.3 6.5± 0.4

Table 2. Performance indices for the GONU and exchange rate experiments using the normalised mean absolute error (nMAE) and normalised
root mean square error (nRMSE) on the test data and averaged over five test trials. Both are normalised by division of the mean.
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Fig. 3. Ten currency exchange rates with respect to the USD fitted
using the MOSM kernel. Training points are shown in black, ground
truth in dashed grey, the coloured lines are the posterior means and
the coloured shadows are the 95% confidence intervals. The red
shaded areas mark the data imputation ranges.

be used to reconstruct the other channels.
Fig. 4 shows how much the channels correlate among each other

under the trained MOSM kernel. Among the EUR, GBP, and CHF
channels we see a strong positive correlation which is highly likely
as the EU is the major trading partner for the GBP and CHF. Further-
more, we see that the HKD correlates negatively with the EUR, JPY,
and AUD as the AUD and JPY correlate positively. The correlation
between AUD and NZD is hardly surprising as these markets usu-
ally move quite similarly due to the geographic constraints of New
Zealand.

5. DISCUSSION

We have presented and implemented the MOGP approach through
analysis of real-world financial time series. In particular, we have
compared the performance of five trials of the MOSM, CSM, SM-
IGP, and SM-LMC multi-output GP kernels, where we find that we
are able to use the added flexibility of the MOSM to our advantage.
A summary of kernel performance with respect to the normalised
mean absolute error (nMAE) and normalised root mean square error
(nRMSE) in the test points is given in Table 2, where we observe
a general decrease in error for models that are more flexible. The
MOSM shows lower error values although it is also the most dif-
ficult model to train due the number of extra parameters. With an
appropriate choice of initialisation parameters it is, however, able to
find better fits between the channels than other models in terms of

EUR CAD JPY GBP CHF AUD HKD NZD KRW MXN

EU
R

CA
D

JP
Y

GB
P

CH
F

AU
D

HK
D

NZ
D

KR
W

M
XN

1.0 0.5 -0.3 0.7 0.7 -0.1 -0.7 0.3 -0.3 -0.2

0.5 1.0 0.2 0.2 0.3 0.9 -0.5 0.5 -0.2 0.1

-0.3 0.2 1.0 -0.3 -0.3 0.6 -0.9 -0.1 0.3 0.4

0.7 0.2 -0.3 1.0 0.4 0.0 -0.0 0.1 -0.3 -0.2

0.7 0.3 -0.3 0.4 1.0 -0.1 -0.4 0.6 -0.3 -0.1

-0.1 0.9 0.6 0.0 -0.1 1.0 -0.6 0.4 0.1 0.2

-0.7 -0.5 -0.9 -0.0 -0.4 -0.6 1.0 -0.2 -0.3 -0.2

0.3 0.5 -0.1 0.1 0.6 0.4 -0.2 1.0 -0.4 -0.1

-0.3 -0.2 0.3 -0.3 -0.3 0.1 -0.3 -0.4 1.0 0.1

-0.2 0.1 0.4 -0.2 -0.1 0.2 -0.2 -0.1 0.1 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 4. Cross-correlation between the ten currency exchange chan-
nels using the MOSM by evaluating the kernel (Eq. 2) at τ = 0 and
normalising with the sum of the weights of each channel.

nMAE and nRMSE.
The challenge of fitting volatile financial data is the fact that un-

predictable pattern deviations occur without precedent. While for
example the GARCH model allows for modelling the heteroskedas-
tic nature of financial data (i.e. the varying magnitude of volatility
over time), the spectral kernels do not as they are by definition sta-
tionary which is also one of their drawbacks. While we can extract
some of the interdependencies between the channels, these cross-
correlations are hard to train and prone to fluctuations between trials.

Future work could include exploring financial data sets with
non-Gaussian likelihoods by warping GPs as proposed by [38, 39],
or by using Student’s t-distribution likelihoods to better identify het-
eroskedasticity as used by GARCH and other financial models. Fur-
thermore, better initialisation of hyperparameters and training can
also greatly improve the results of the models which should remain
an active area of research. However, the possibility of MOGPs to
explore relations across channels could become a valuable asset in
financial modelling and market dependency assessment.
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