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ABSTRACT

Coded compressed sensing is an algorithmic framework

tailored to sparse recovery in very large dimensional spaces.

This framework is originally envisioned for the unsourced

multiple access channel, a wireless paradigm attuned to

machine-type communications. Coded compressed sensing

uses a divide-and-conquer approach to break the sparse

recovery task into sub-components whose dimensions are

amenable to conventional compressed sensing solvers. The

recovered fragments are then stitched together using a low

complexity decoder. This article introduces an enhanced

decoding algorithm for coded compressed sensing where

fragment recovery and the stitching process are executed

in tandem, passing information between them. This novel

scheme leads to gains in performance and a significant

reduction in computational complexity. This algorithmic

opportunity stems from the realization that the parity struc-

ture inherent to coded compressed sensing can be used

to dynamically restrict the search space of the subsequent

recovery algorithm.

Index Terms— Unsourced multiple-access, compressed

sensing, error correction codes, complexity reduction.

I. INTRODUCTION

The emergence of machine-driven wireless communi-

cations and the Internet of Things (IoT) are poised to

disrupt existing communication infrastructures. To ready

wireless systems for such a transformation, new communi-

cation models are being introduced, along with novel access

schemes. Notably, the unsourced multiple access communi-

cation (MAC) channel was proposed by Polyanskiy in [1]

to accommodate the sporadic transmission of short packets.

Along with this new perspective, Polyanskiy also introduced

an achievability bound for finite blocklength communication

over the unsourced MAC. This bound is derived in the

absence of computational complexity constraints and has

served as a benchmark for pragmatic schemes [2]–[5].

In [6], we proposed a complexity reduction technique for

the unsourced MAC based on splitting data into fragments.

This framework, called coded compressed sensing (CCS),

leverages the strong connection between the unsourced MAC
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and compressed sensing (CS) in high dimensions. The gist

of the approach is to break a CS problem with exceedingly

large dimensionality into manageable sub-components. For

the unsourced MAC, this translates into sending sequences

of fragments, one per slot, rather than the entire payload.

A commodity CS solver can then be applied to every slot.

Yet, the output of the recovery process yields a collection

of unordered list of message fragments, rather than a col-

lection of messages. That is, fragments coming from a same

message must be pieced together. To enable this process,

redundancy in the form of parity bits is added to every

fragment. The resulting message structure is then employed

by a tree decoder to stitch message together. The algorithm

is described and analyzed thoroughly in [7].

Despite its recent introduction, the CCS framework has

drawn attention. In [8], Calderbank and Thompson combine

the CCS framework with a low-complexity CS construction

based on second order Reed-Muller codes [9] to create

an ultra-low complexity CS scheme. Also, recent work by

Fengler, Jung, and Caire [10] draws a close connection

between the sparse structure created by CCS and sparse

regression codes (SPARCs) [11]–[13]. Therein, they leverage

the CCS data structure, but pair it with a dense CS matrix

(rather than the CCS block diagonal structure) and employ

approximate message passing (AMP) [14], [15] to decode it.

The decoding algorithm proposed for the CCS framework

features two components, namely sparse recovery and frag-

ment stitching. In our original treatment and later contribu-

tions [7], [8], [10], [16], these tasks are treated separately.

Support recovery is performed first, followed by stitching

through tree decoding. However, it has become apparent that

the information contained in message fragments in the form

of parity bits can be integrated into the recovery process. In

particular, consistent partial paths found in the decoding tree

collectively restrict the realm of possibilities for parity bits

in subsequent fragments. Based on this information, the CS

matrix associated with slots can be pruned dynamically in

the standard CCS framework. Likewise, these conditions can

be embedded in the graphical representation of the problem

used for AMP in [10]. In this article, we focus on the former

and present an algorithmic enhancement to the standard

CCS decoder. The result is a dynamic where fragment

recovery and message stitching work synergistically, leading

to complexity reduction and performance improvements.
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II. SYSTEM MODEL AND BACKGROUND

The unsourced MAC model seeks to capture sporadic

communications from many devices to an access point.

The motivation behind this channel can be found in [1].

For the discussion at hand, it suffices to mention that this

model admits a CS representation. Specifically, in its most

basic form, the unsourced MAC problem is captured by the

equation

y =
∑

i∈Sa

xi + z (1)

where xi is the n-dimensional codeword corresponding to

message i, and z denotes additive white Gaussian noise

with covariance σ2
I. The collection of B-bit information

messages transmitted on the channel is W = {wi : i ∈ Sa},

where |Sa| = Ka. All the devices employ the same code-

book and, as such, xi = f(wi), irrespective of the device

performing the encoding. The decoding task is to produce

a list estimate Ŵ (y) for the transmitted messages W with

|Ŵ (y)| ≤ Ka. Overall performance is assessed using the

per-user error probability defined by

Pe =
1
Ka

∑
i∈Sa

Pr
(
wi /∈ Ŵ (y)

)
. (2)

The CS analogy for this problem is obtained by using an

alternate message representation. Suppose that we interpret

B-bit message w as a location in a vector of length 2B.

That is, this latter vector has zeros everywhere except for a

one at location [w]2, where [·]2 denotes an integer expressed

with a radix of 2 (binary form). We call this latter form the

message index. To each such vector corresponds a signal x =
f(w). If we build matrix X ∈ R

n×2B where the columns

are codewords {f(w)} in ascending w order, then we can

rewrite (1) as

y = Xb+ z. (3)

In this characterization, b is a Ka-sparse vector that is

equal to the sum of the transmitted message indices. While

(3) assumes the form of a noisy CS problem, the sheer

dimension of the problem precludes the direct application

of commodity CS solvers. The goal of CCS is to offer

pragmatic encoding and decoding schemes that together

achieve Pe ≤ ε, where ε is a target error probability, and

does so with manageable computational complexity.

w(0) w(1) p(1) w(2) p(2) w(3) p(3)

m0 m1 l1 m2 l2 m3 l3

Fig. 1: This diagram illustrates the structure of CCS sub-

blocks, with their information and parity bits. Every sub-

block is encoded separately before transmission within a slot.

The original CCS scheme works as follows. An informa-

tion message is partitioned into several fragments. Redun-

dancy can be added to every fragment, except for the leading

(root) fragment, in the form of parity bits. These parity

bits are formed by taking (random) linear combinations of

all the information bits contained in fragments that precede

it. Together, an information fragment and its corresponding

parity bits form a sub-block of a size conducive to CS

recovery by a commodity solver at the slot level. The

transmission of sub-blocks occurs sequentially, with every

slot taking the form of an unsourced MAC problem, albeit

one with a much lower dimension. The structure of sub-

blocks appear in Fig. 1.

Upon completion of slot j, a CS solver is applied to

the signal received therein and a list of Ka sub-blocks is

assembled. Tree decoding is then applied to these lists to

stitch fragments into transmitted messages. As an initial step,

the tree decoder selects a root sub-block and compute values

for parity bits ~p(1). Every sub-block in slot 1 that matches

these parity bits is attached to the root, thereby producing

consistent partial paths. This process then moves forward.

For every consistent path at stage j − 1, parity bits ~p(j) are

computed and matching sub-blocks on list j are attached to

this path, forming new branches. This continues until the

last slot is reached. At this point, every root segment with a

unique path to the last slot is deemed a valid tree message;

whereas instances where multiple paths from a same root to

the last slot survive or all paths from a root halt prematurely

are declared decoding failures.

The overall CCS scheme, including both its CS sub-

components and the ensuing tree decoding, is described and

analyzed in great detail in [7]. This article also points to a

natural tradeoff between error probability and computational

complexity, and it offers a principled way to allocate infor-

mation and parity bits to sub-blocks, so as to achieve good

performance. The treatment presented therein and in follow-

up CCS articles [8], [10], [16], [17] assumes that decoding

takes place in two disjoint stages: sparse recovery followed

by tree stitching. Yet, the structure of CCS invites a more

judicious use of information. Tree decoding can be run in

tandem with the CS solver as it progresses through slots. In

particular, the collection of active paths from all the roots to

stage j− 1 can inform the CS solver at stage j. This insight

and its repercussions are discussed in the next section.

III. ENHANCED DECODING PROCESS

As described above, CCS is a divide-and-conquer ap-

proach where a large CS problem is broken down into

smaller sub-components. The sparse recovery problem as-

sociated with slot j assumes the following form

y(j) = X
(j)b(j) + z(j). (4)

This equation is analogous to (1), albeit on a much smaller

scale. We emphasize that b(j) remains Ka-sparse, however it

is equal to the sum of the message indices corresponding to

sub-blocks {wi(j)pi(j) : i ∈ Sa}. The number of columns

in X
(j) is 2mj+lj , where mj and lj are the numbers of

information and parity bits in w(j) and p(j), respectively.



These parameters are selected to make sure that (4) is

amenable to computationally efficient CS decoders. This is

the way sparse recovery on a slot per slot basis is performed

in the original CCS scheme.

In contrast, suppose that sparse recovery and tree stitching

are performed concurrently. Then, by the time the access

points is ready to perform sparse recovery on y(j), the

tree decoder has already identified all the active paths from

root fragments to sub-blocks at level j − 1. In addition,

it has computed all the possible parity patterns for slot j.

Explicitly, to every active path

w(0)w(1)p(1) · · ·w(j − 1)p(j − 1)

corresponds a parity pattern p(j). If there are no active paths

that lead to a specific parity pattern, then any sub-block at

level j that contains this parity pattern will eventually be

discarded by the tree decoder. It has effectively become an

inadmissible pattern based on past observations.

This realization introduces an algorithmic opportunity

for performance enhancement. Instead of waiting for this

information to be employed by the tree decoder, it can be

used preemptively during the sparse recovery of slot j. In

particular, all the columns in X
(j) that are attached to sub-

blocks containing inadmissible parity patterns can be pruned.

Let the set of possible parity patterns at stage j, given

past observations, be denoted by Pj . Then, the number of

columns in the dynamically pruned version of X(j) becomes

2mj |Pj |, rather than the original 2mj+lj . This conceptual

algorithm improvement is illustrated in Fig. 2.
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Fig. 2: This notional diagram shows how a tree decoder that

runs in parallel with the sequential sparse recovery process

can inform the latter about inadmissible parity patterns. This,

in turn, leads to the preemptive pruning of the sensing ma-

trices, which enhances performance and reduces complexity.

Complexity Reduction: It is possible to assess the ex-

pected dimensionality reduction delivered via this enhanced

decoding algorithm by tracking the expected number of

consistent partial paths seen at various stages during the

decoding process. To do so, we leverage the approximate tree

code analysis found in [7] under the simplifying assumption

that wi(j) 6= wk(j) for any i 6= k. We note that the

same article offers an exact (and cumbersome) analysis

of this particular problem. However, the aforementioned

assumption is valid with high probability at every stage j
where mj is large, and the ensuing curves are representative

for operating regimes of interest. The complexity reduction

analysis also assumes that the CS lists are error free. Under

these conditions, the number of active paths from a single

root to slot j is given below.

Proposition 1 ([7]). The expected number of erroneous paths

that survive stage j, which we denote by Lj , is

E[Lj ] =
∑j

q=1

(
Kj−q

a (Ka − 1)
∏j

ℓ=q pℓ

)
(5)

where pℓ = 2−lℓ .

Since there are Ka root fragments, the expected number of

consistent partial paths is Pj = Ka+KaE[Lj ]. If we further

assume that parity patterns are independent from one another

and Pj has concentrated around its mean, we get

|Pj | ≈ 2lj
(
1− (1− 2−lj )Pj

)
.

The expected reduction ratio of the number of columns for

the sensing matrix at slot j is then equal to 1−(1−2−lj)Pj .

To further demonstrate the benefits of pruning technique,

we consider one of the optimized parity allocation sequence

given in [7],

(l1, l2, . . . , l10) = (6, 8, 8, 8, 8, 8, 8, 8, 13, 15). (6)

Figure 3 shows a significant reduction in the size of pruned

matrices after the first few stages. Similar results are ob-

served for alternate parity allocations. This behavior directly

translates into a complexity reduction for the CS solvers,

especially at the later stages.

Additional Implications: The dynamic pruning of the

sensing matrices has implications beyond the matrix width

reduction described above. First, we stress once again that

the analysis presented above naively assumes that the CS

output lists contain all valid segments. This may not always

be the case. The dynamic pruning seems to affect the slot

CS decoding in, at least, three different ways.

1) When the previous stages have identified all the correct

sub-blocks, the sensing matrix for the current stage is

trimmed down in a way that is consistent with the

problem statement. This reduces the search space for

the CS solver and improves its performance.

2) If an erroneous partial path survives until stage j − 1,

then the pruned sensing matrix at stage j retains all the

columns with parity patterns that are consistent with this

erroneous path, but discards other columns. This steers

the CS solver towards a list that is more likely to include

sub-blocks that are consistent with the erroneous path.

This increases the propensity for error propagation, with

erroneous paths staying alive longer on average.
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Fig. 3: This graph illustrates the drastic reduction associated

with matrix pruning in the enhanced decoding process for

the parity allocation in (6). For every slot, the curve reflects

the (approximate) number of columns in the pruned sensing

matrix over the original width of the matrix. The reduction

is much more pronounced for later stages.

3) If a valid sub-block is omitted from a CS list, then the

corresponding parity pattern may disappear. When this

is the case, the received vector for the subsequent slot is

no longer of the form y(j) = X
(j)b(j)+z(j) because of

the missing columns. This results in noise amplification

for the other messages being decoded.

Despite some negative aspects of the enhanced decoding

process for CCS, the proposed approach improves overall

performance beyond the obvious complexity reduction. This

is illustrated in the next section.

IV. PERFORMANCE EVALUATION

The simulation results contained in this section adopt a set

of parameters that has become widespread on articles related

to the unsourced MAC. While the algorithmic enhancement

described above is general, this choice of parameters is

conducive to a rapid and fair comparison with alternate

schemes. We examine a system where Ka ∈ [10 : 300] and

B = 75 bits. The total number of channel uses is 22,517.

The message recovery task is partitioned into 11 stages.

Performance is reported in the form of the minimum Eb/N0

required to achieve per user error probability of Pe = 0.05.

In previous articles on CCS, the number of channel uses

is partitioned equally into 11 slots, with each slot having

length 2047. The columns of the base X
(j) (before pruning)

are judiciously selected codewords from the (2047,23) BCH

codebook [7]. Note that these binary codewords are centered

and renormalized to become proper signals. The first two

curves on Fig. 4 correspond to the original scheme first

reported in [6] and the performance improvement associated

with the enhanced algorithm introduced above. For these

curves, the length of each coded sub-block is set to 14 for
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Fig. 4: The enhanced decoding algorithm for CCS yields

better per user probability of error and reduces complexity.

Additional gains are possible through reparameterization.

Ka ∈ [10 : 125] and 15 for Ka > 125. In both cases, we

allow one extended iteration whereby the strongest messages

are removed from the received signal and the decoding

algorithm is performed a second time on the residual signal.

The enhanced decoding introduces new possibilities in

terms of system design. The size of the sub-blocks in CCS

is constrained by the width of the sensing matrix 215,

with the understanding that this is close to the limit of

what a commodity CS solver can handle on a conventional

computer. However, under the dynamic pruning of the sens-

ing matrices, these design parameters can be revisited. For

instance, one could devote more channel uses to early slots

where the sampling matrices remain essentially untouched,

with the later stages necessarily receiving fewer symbols.

Alternatively, the allocation of information and parity bits

per slot can be re-optimized, taking into consideration the

eventual dimensionality reduction produced by the pruning

process. Due to space restrictions, we cannot discuss these

possibilities at length. Still, we include a third curve on Fig. 4

to showcase how a reparameterization of the system leads

to improvements.

V. CONCLUSIONS AND FUTURE WORK

This article highlights an algorithmic improvement to

the decoding process for CCS based on the structure of

the encoding process. This improvements leads to both a

decrease in the per user probability of error and a significant

reduction in computational complexity. Under this technique,

additional gains can be obtained by further optimizing

system parameters. It appears that the same information

structure can be leveraged in alternate versions of CCS,

including those relying on AMP.
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