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ABSTRACT

End-to-end approaches for automatic speech recognition
(ASR) benefit from directly modeling the probability of the
word sequence given the input audio stream in a single neural
network. However, compared to conventional ASR systems,
these models typically require more data to achieve compa-
rable results. Well-known model adaptation techniques, to
account for domain and style adaptation, are not easily ap-
plicable to end-to-end systems. Conventional HMM-based
systems, on the other hand, have been optimized for various
production environments and use cases. In this work, we
propose to combine the benefits of end-to-end approaches
with a conventional system using an attention-based discrim-
inative language model that learns to rescore the output of a
first-pass ASR system. We show that learning to rescore a
list of potential ASR outputs is much simpler than learning
to generate the hypothesis. The proposed model results in up
to 8% improvement in word error rate even when the amount
of training data is a fraction of data used for training the
first-pass system.

Index Terms— language modeling, end-to-end, atten-
tion, minimum word error rate

1. INTRODUCTION

Conventional automatic speech recognition (ASR) systems
model the probability of transcription given the input audio as
three separate models [1] - acoustic, pronunciation and lan-
guage models - each trained with a different object function.
In general, the acoustic models are based on a hybrid DNN-
HMM structure rand language models are n-gram based
models. Lately, recurrent neural network (RNN) language
models have been shown to outperform n-gram based mod-
els, due to their ability to capture long-term context [2, 3].
However, due to their computational complexity, it is often
not feasible to use recurrent neural networks in the first pass
of a real-time ASR system. Instead, they are often used as
second-pass rescorers, as the set of candidate word sequences
to rescore is usually small in size [4–6].
More recently, a lot of work has been done in training a single
neural network that directly learns how to map input speech
signal to word sequences (or graphemes) [7–9], without the
need for training separate models. Although the results are

state-of-the-art or close to it on certain tasks, most end to
end models are trained on large amounts of transcribed data
and its unclear if these models will perform better than con-
ventional systems in a low data regime [10] or in (domain)
mismatch scenarios where the underlying distribution for
(paired speech and text) training data does not match the test
distribution [11]. Various techniques have been explored to
overcome these problems and bring some of the existing ad-
vantages of a convention system - fusing external language
model trained on abundantly available matched text corpora
[11, 12], contextual biasing [13, 14] and customizing pronun-
ciations [15] - to the end to end models.

In this paper, we combine the simplicity of rescoring con-
ventional ASR models, using neural language models, with
the benefits of an attention-based end-to-end model. More
specifically, an RNNLM style model is trained using word-
level contextual input, while simultaneously attending to au-
dio. The model is trained using a minimum word error rate
(MWER) criterion, which learns to rescore the N -best hy-
potheses list from a first pass system. The proposed model
can learn, using a discriminative criterion, to focus and over-
come the errors of the conventional first pass ASR model,
having access to both word-level and acoustic-based embed-
dings. To avoid overfitting and data sparsity issues, we pro-
pose to use embeddings generated by a first pass acoustic
model. This choice can be relaxed depending on the avail-
ability of training data and one can decide to learn the acoustic
embeddings (or fine tune the first pass acoustic model embed-
dings) directly using the MWER criterion. However, using
first pass acoustic model embeddings can practically speed
up both training and inference. Additionally and since the
model is trained using a MWER criterion, it does not have to
be confined to a normalized generative form. This can dras-
tically speed up inference, especially when dealing with very
large vocabulary ASR systems.

2. RELATED WORK

MWER criterion has been previously used in [16] to improve
the performance of LSTM LMs. They train the model using
the MWER criterion but they do not explore using an un-
normalized model or a model with attention to audio. [17]
also explored training a spelling correction model to learn the
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errors made by a first pass system. However, they did not
explore using this model for a conventional system or condi-
tion on input audio (e.g. by attending to input audio). Be-
sides, their spelling correction model is a generative model
(decoder generates corrected characters in a left-to-right man-
ner). Recently, [18] proposed to use a listen-attend-and-spell
(LAS) model as a second pass rescoring model for output of
an RNN-Transducer (RNN-T) first pass. They show signifi-
cant improvements with LAS as rescoring component, even
with a shared encoder. However, the amount of training data
used for LAS rescoring was the same as the training data
used for first pass model while we explore training the rescor-
ing model with much less amount of data and is important
for low-resource languages or domain adaptation with limited
amount of in-domain data. The best performance was also
achieved when the shared encoder was fine tuned in multi-
task fashion (combined loss for both RNN-T and LAS). Ad-
ditionally, they do not report results on using such a rescoring
scheme with a conventional ASR model.

3. AUDIO-ATTENTION RECURRENT NEURAL
NETWORK LANGUAGE MODEL

A language model estimates the probability of a given se-
quence of words −→w . N-gram LMs make the assumption that
the probability of word wi depends only on previous n − 1
words, so that the probability can be written as:

p(−→w ) =
∏
wi

p(wi|wi−1, wi−2, ...wi−n+1) (1)

However, recurrent neural networks can model the probability
of word given its entire history by applying a compact recur-
rence architecture on the hidden layer of the model.

p(−→w ) =
∏
wi

p(wi|hi) (2)

where hi is the hidden representation for the word wi. In a
simple recurrent network, the forward step for predicting the
probability of word wi can be described as [16]:

xi = OneHot(wi−1)

hi = σ(WT
ihxi +WT

hhhi−1)

p(wi|w<i) = Softmax(WT
hohi)

(3)

where OneHot returns a low dimensional representation for
a word, σ() is an element-wise sigmoid function and the fi-
nal model probabilities are obtained by applying a softmax
function on the activation of the final output. The above set
of equation can be easily extended to other types of recurrent
models such as LSTMs [19].

An RNN-based language model is trained by minimiz-
ing the cross-entropy loss, which directly maximizes the log-

likelihood of training data sequences:

LCE =
∑
w

L∑
i=1

−log p(wi|wi−1, wi−2, .., w0) (4)

3.1. Minimum word error rate training

Using a RNN-based language model during first pass of a
real-time ASR system is often infeasible (due to lack of state
merging as opposed to n-gram models) and most applications
use RNNLMs to rescore the output of a first pass ASR system.
The most common approach is to generate an n-best list from
the first pass and replace or interpolate the language model
score of the first pass with a score from the RNNLM.

As a rescoring model, an RNNLM can be directly trained
to rescore the first pass n-best list, as opposed to a maxi-
mum likelihood criterion over text-only data. MWER crite-
rion, which estimates an expectation of word errors over an
output hypotheses list, has been proposed for both language
model training [16] as well as attention-based models [9]. Let
E(−→w i,

−→w ∗) be the edit distance between hypothesis −→w i and
reference sequence −→w ∗, let Ē be the average edit distance for
an n-best list, and let Ê() = E() − Ē be the relative edit dis-
tance, then MWER loss is defined as:

Lwerr =
∑
−→w i∈w

pθ(
−→w i|O)Ê(−→w i,

−→w ∗) (5)

where pθ(−→w i|O) is the normalized posterior probability (over
n-best list) of the hypothesis given the input acoustics, com-
puted considering both the acoustic model and the language
model probabilities:

pθ(
−→w i|O) =

exp(gi)∑N
j=1 exp(gj)

(6)

where

gi = αlog plm(−→w i) + log pam(O|−→w i) (7)

and pam(O|−→w i) is the sequence probability computed by the
acoustic model, plm(−→w i) is the sequence probability com-
puted by the rescoring RNNLM. N is the size of n-best list.
According to equation 6, the posterior probabilities are nor-
malized over the n-best list. Therefore, it is not necessary
for the RNNLM to produce normalized probabilities for each
word of the sequence. In this paper, we explore both a nor-
malized and unnormalized output for the RNNLM.
To stabilize training and achieve better convergence, we in-
terpolate the word error rate losses with cross-entropy loss,
weighted by a hyper-parameter λ [9]:

Ltotal = Lwerr + λLCE (8)

3.2. Attention to audio

As described in Section 1, unlike conventional ASR systems
with a separate acoustic model and language model, end-



to-end systems benefit from directly optimizing the p(w|O).
Similarly, the input to the standard RNNLM can be modified
so that it also models p(w|O):

P (−→w |O) =
∏
|−→w |

p(wi|hi, O) (9)

There is no direct alignment between the words and segments
of input audio. The dependence in equation 9 is learnt by
using an LSTM with attention to input audio frames. At every
step, the probability of next word is computed conditioned on
all the previous words as well an attention context over the
entire audio sequence:

ci = AttentionContext(hi−1, O)

hi = RNN(hi−1, wi−1, ci−1)

p(wi|w<i, O) = Softmax(WT
ho(hi, ci))

(10)

The attention context over (frame-by-frame) encoded audio
is learnt similar to the the way described in [8]. However,
unlike end-to-end systems, we make two distinctions:

1. Learning a separate encoder over raw audio features is
not a requirement for our model. Instead, we directly
take the intermediate layers of the first pass acoustic
model as input to our model. This reduces the amount
of training data needed to learn a good model. In sec-
tion 4 we compare using different encoder types on top
of the output of first-pass acoustic model.

2. The model is not trained to generate the correct tran-
scription but instead trained only to minimize the word
error rate of an n-best list generated by a first pass sys-
tem. This is is an important distinction as the discrim-
inative flavor of our model enables it to focus on cor-
recting first-pass errors, as opposed to learn to generate
words.

Figure 1 shows the proposed architecture with different
ways of adding attention to the LM LSTMs; AM LSTM is
the first pass model used for generating the audio embedding,
CNN as an optional encoder that can be learnt during model
training.

4. EXPERIMENTS

In all of the experiments in this paper, we build an ASR
system that targets a spoken dialog system used in digital
assistants such as Amazon Alexa, Google assistant, Siri,
etc. The acoustic model is a low-frame-rate model with 2-
layer frquency LSTM [20] followed by a 5-layer time LSTM
trained on cross-entropy loss, followed by sMBR loss [21].

All recurrent neural models (NLM) models have a word
embedding size of 512, and comprise two LSTM [19] lay-
ers, each with 512 hidden layers. During training, the mod-
els are trained on either cross-entropy loss (NLM-XENT) or
MWER loss (NLM-MWE) as described in section 3.1, with a

Fig. 1: LSTM language model with attention to audio embed-
ding from the first pass

maximum n-best list size of 64. During inference, the NLMs
are used to rescoring 10-best hypotheses generated from the
first-pass decoding. For NLM models with attention to audio
(NLM-AUDIO), we attend to the activation of the last LSTM
layer (dimension of 768) of the first pass acoustic model and
learn to projection it to a smaller dimension of 200. For all ex-
periments, a CNN-based encoder was used to learn the acous-
tic embeddings (details in section 4.3).

The first-pass LM is trained on a variety of out-of and
in-domain corpora, written text data and transcribed speech
data from real user-agent interactions1 respectively. The writ-
ten text corpora contain over 50 billion words in total. A
Kneser-Ney (KN) [22] smoothed n-gram language model is
estimated from each corpus with a vocabulary of 400k, and
the final first-pass LM is a linear interpolation of these com-
ponent LMs. The interpolation weights are estimated by min-
imizing the perplexity on a development set. The transcribed
speech data, used to train the rescoring NLM-XENT com-
prises of approximately 300 million words of text. A smaller
dataset of 5 million tokens is used for training the models that
require audio data (NLM-MWE and NLM-AUDIO) in addi-
tion to the transcription. From this corpus, we extract the vo-
cabulary of 66k most frequent words. All NLM models use
this vocabulary and out of vocabulary tokens are mapped to
<unk>.

We evaluate each model on a 40k utterance test data set
and measure the word error rate reduction (WERR) relative
to the baseline model. Table 1 shows the result for different
rescoring models both in terms of perplexity2 and word er-
ror rate improvements (compared against the baseline 4-gram
LM). We see very small improvement when using a cross-
entropy trained NLM. However, with MWER rate training
with un-normalized output, even on much smaller amount of
data, the improvement is 3.6%; the perplexity of the normal-
ized is much higher because its not optimized for maximum
likelihood. Further, the model with attention to acoustic em-

1The user data is anonymized and only a subset of data used for our pro-
duction system

2Perplexity is only reported for normalized models.



Table 1: Perplexity(PPL) and Relative Word Error Rate Re-
duction (WERR) for different rescoring models

Model PPL WERR

KN-4g 37.2
NLM-XENT 34.7 1.9%
NLM-MWE-NORM 90.7 2.6%
NLM-MWE - 3.6%
NLM-MWE-AUDIO-NORM 18.5 7.0%
NLM-MWE-AUDIO - 7.3%
10-best oracle - 28%

beddings, from the first-pass AM results in about 7.3% im-
provement. The perplexity of the NLM model with attention
to audio is significantly low because its able to attend to the
audio frames corresponding to the word being predicted. We
also see that the un-normalized models perform slightly better
than the normalized model because they have less constraints
on the output scores.

4.1. Using pre-trained language model

Minimum word error rate training requires audio data to
generate the n-best list required for training. However, LMs
trained with cross-entropy can be trained on much larger
amounts of text-only data. Table 2 shows the result of fine-
tuning a pre-trained NLM-XENT (trained on 300 million
tokens) with MWER criterion. In case of audio-attention
model, it is not possible to pre-train all the layers of model,
since it needs an extra context input. Here, we pre-train the
two LSTM layers of the model and apply audio context only
to the final affine. We see only a minor improvement over the
randomly initialized model in all cases. This might be due to
the amount of audio training data we have.

Table 2: Perplexity(PPL) and Relative Word Error Rate Re-
duction (WERR) for different attention location

No-pretrain Pretrain
Model PPL WERR PPL WERR

NLM-XENT 34.7 1.9 % 33.8 1.9%
NLM-MWE - 3.6% - 4.5%
NLM-MWE-AUDIO - 7.3% - 7.7%

4.2. Adding audio attention to LM

In a standard end-to-end systems, the attention to encoder
states is applied at every layer. However, in a language model,
the model has to learn both the dependency to acoustics as
well as the temporal dependency in the word sequence. Table
3 shows results of different variations of attention location, as
shown in figure 1. We see that adding audio context to the last
LSTM-LM layer leads to some degradation in performance.

However, using audio context at final affine layer or at the first
LSTM layer leads to similar results.

Table 3: Model size and Relative Word Error Rate Reduction
(WERR) for different attention location

Attention location # params (MM) WERR

Final Affine (A3) 69 7.3%
First LSTM layer (A1) 71 6.6%
Last LSTM layer (A2) 71 6.1%
First LSTM + Final Affine 87 7.4%

4.3. Learning context encoder for audio embeddings

In addition to attending to hidden layer outputs of the first
pass LSTM-AM, we also experimented with applying a learn-
able context encoders on top of the LSTM AM outputs. Fol-
lowing various papers, we experimented with three different
encoder types: a) 2-layer pyramidal LSTM (PyLSTM) [8] b)
single layer time-delay Neural Network (TDNN) [23] with
context {−1, 2} and c) convolutional neural network (CNN)
with filter size 3x3 and non-overlapping max pooling of size
3 [24].
Table 4 shows the result of applying these different context
encoders. We see that using Pyramidal LSTM and TDNNs for
encoding the input improves the performance of the model.
However, both TDNN and Pyramidal LSTM have a signifi-
cant increase in number of parameters as well as training and
inference time. CNN encoders are able to improve the perfor-
mance over having no encoder. For all our other experiments,
we chose to go with CNN encoder because of its fast training
and inference speed.

Table 4: Model size and Relative Word Error Rate Reduction
(WERR) for different attention location

Encoder type # params (MM) WERR

No encoder 68 7%
PyLSTM 84 7.9%
TDNN 83 8.0%
CNN 69 7.3%

5. CONCLUSION

In this paper, we proposed to use an attention-based language
model for second-pass rescoring of n-best lists generated by
a conventional ASR system. We show that by training the
model with minimum word error rate (MWER) criteria, we
can get upto 4.5% word error rate improvement over the the
first pass system. Further, we show that the attention-based
model can improve the word error rate even when the amount
of training data is less and no task-specific audio encoder is
learnt. We also show that pre-training the word embeddings



and LSTM layers of the model can improve the performance
of the model to 8% WERR. Future work will compare other
end-to-end systems with this approach as well as extending
this work to very low-data regime such as few-shot learning.
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S Khudanpur, “Recurrent neural network based lan-
guage model,” in Eleventh annual conference of the in-
ternational speech communication association, 2010.
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