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ABSTRACT

Graph neural networks (GNNs), consisting of a cascade of layers ap-
plying a graph convolution followed by a pointwise nonlinearity, have
become a powerful architecture to process signals supported on graphs.
Graph convolutions (and thus, GNNs), rely heavily on knowledge of the
graph for operation. However, in many practical cases the GSO is not
known and needs to be estimated, or might change from training time
to testing time. In this paper, we are set to study the effect that a change
in the underlying graph topology that supports the signal has on the out-
put of a GNN. We prove that graph convolutions with integral Lipschitz
filters lead to GNNs whose output change is bounded by the size of the
relative change in the topology. Furthermore, we leverage this result to
show that the main reason for the success of GNNs is that they are sta-
ble architectures capable of discriminating features on high eigenvalues,
which is a feat that cannot be achieved by linear graph filters (which are
either stable or discriminative, but cannot be both). Finally, we com-
ment on the use of this result to train GNNs with increased stability and
run experiments on movie recommendation systems.

Index Terms— graph neural networks, graph signal processing,
network data, stability, graph convolutions

1. INTRODUCTION

Networks such as power grids [1], transportation networks [2] or
weather sensor networks [3] generate data with an irregular structure
dictated by the topology of the network. This data can be modeled as
a graph signal by assigning each entry to a node in some underlying
given graph that describes the network [4]. The graph shift operator
(GSO) is a linear map between graph signals where the output value
at each node is a weighted average of the input values at neighboring
nodes. The GSO is thus any matrix that respects the sparsity of the
graph (adjacency [5], Laplacian matrix [6], etc.), and the output is said
to be a shifted version of the input.

The operation of graph convolution, defined as a linear combination
of shifted version of the signal, is used to compute the output of graph
filters in an efficient and decentralized fashion [7, 8]. Furthermore,
graph convolutions are used to build graph neural networks (GNNs), as
a cascade of layers each of which applies a graph convolution, followed
by a pointwise nonlinearity [9–11]. GNNs offer a nonlinear transfor-
mation of the input data that has achieved remarkable performance in
wireless networks [12], decentralized control of robot swarms [13] and
recommendation systems [14], among others [15,16]. Graph filters and
GNNs rely heavily on the knowledge of the GSO. But if we do not
know the graph and need to estimate it [17], or if the graph changes
with time [18], or if we want to train on one graph but test on another
(transfer learning) [19], then it is of utmost importance to characterize
how graph filters and GNNs react to changes in the underlying graph
support.
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In this paper, we start by considering GSOs that are permutations
of each other and prove that graph convolutions are unaffected by these
node relablings (permutation equivariance). Then, we prove that for
graph convolutions computed on two arbitrary GSOs, the output will
differ in a manner proportional to the relative distance between the
GSOs (stability to relative perturbations). These results show that there
is a trade-off between stability and discriminability for linear graph fil-
ters, but that this trade-off can be overcome by the use of pointwise
nonlinearities. This renders GNNs both stable and discriminative, a
feat that cannot be achieved by linear graph filters.

Stability results in graph neural networks have only been devel-
oped, so far, for graph scattering transforms, which involve carefully de-
signed, non-trainable filters [19–21]. In [20], stability to permutations is
studied, as well as to perturbations on the eigenvalues and eigenvectors
of the underlying graph support. In [21] graph perturbations are mea-
sured in terms of the diffusion distance, while in [19] different graph
wavelets are compared in their stability [22, 23].

In Sec. 2 we introduce the GSP framework, define graph convolu-
tions, and prove stability for linear graph filters. In Sec. 3 we prove
stability for GNNs and discuss how the conditions imposed on filters
determine a trade-off between discriminability and stability, which can
be overcome by the inclusion of pointwise nonlinearities. Finally, in
Sec. 4 we show how to train a GNN while controlling for its stability
and run experiments on a movie recommendation problem. Conclu-
sions are drawn in Sec. 5.

2. STABILITY OF GRAPH FILTERS

Let G = (V, E ,W) be a graph with a set of N nodes V , a set of edges
E ⊆ V × V and an edge weight function W : E → R+. This graph
acts as the underlying support for the available data x ∈ RN . That is, x
is modeled as a graph signal where each entry [x]n = xn corresponds
to the data value assigned to node n [5, 6]. The data x is related to
the underlying graph support by means of a linear map between graph
signals S : RN → RN that we denote a graph shift operator (GSO) [4].
The GSO is a linear operator S that updates the data value on each node
by a weighted average of the values at neighboring nodes, i.e. it shifts
the signal across the graph. Therefore, the GSO can be written as a
N ×N matrix that respects the sparsity of the graph, [S]ij = sij = 0
if i 6= j and (j, i) /∈ E , and the value of the output signal at node i is

[Sx]i =

N∑
j=1

[S]ij [x]j =
∑
j∈Ni

sijxj (1)

where Ni = {j ∈ V : (j, i) ∈ E} is the set of neighboring nodes of
i, and the last equality follows from the sparsity pattern of matrix S.
Examples of GSO typically used in the literature include the adjacency
matrix [5], the Laplacian matrix [6] and the Markov matrix [24].

To process data x in a manner that takes into account the irregular
structure imposed by the underlying graph we need operations built on
(1). In this light, we define the graph convolution as a linear combina-
tion of shifted versions of the signal [7]

y =

K−1∑
k=0

hkS
kx = H(S)x (2)
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where h = [h0, . . . , hK−1] ∈ RK is a set of K filter taps, each one
weighing the information located at the k-hop neighborhood. We say
that H(S) is a graph filter [7]. We note that (2) can be calculated by
means of K − 1 exchanges of information with the one-hop neighbor-
hood. Also, (2) boils down to regular convolution when modeling time
signals as being supported on a directed cycle, see [11] for details.

Graph filters exhibit the key property of permutation equivariance.
Define P = {P ∈ {0, 1}N×N : P1 = 1,PT1 = 1} the set of all
permutation matrices. We prove the following.

Theorem 1 (Permutation equivariance). Let S be the GSO of a graph
G and Ŝ = PTSP be the GSO of a permuted version of G. Likewise,
consider signals x and x̂ = PTx. Then,

H(Ŝ)x̂ = PTH(S)x. (3)

Proof. See [25, Appendix A].

Theorem 1 essentially states that a graph filter on a permuted graph,
applied to a correspondingly permuted signal, yields an output that is
a permuted version of the original output. The immediate consequence
of this theorem, is that graph filters are invariant to node relabelings.

We are ultimately interested in the effect that a more general per-
turbation of the GSO has on the output of a graph filter with fixed filter
taps. Given two GSOs S and Ŝ, consider the distance between filters
H(S) and H(Ŝ) to be

‖H(S)−H(Ŝ)‖P = min
P∈P

max
x:‖x‖=1

‖PTH(S)x−H(PTŜP)PTx‖.

(4)
We note that (4) is the operator norm, modulo permutations. We also
note that if Ŝ = PTSP, then ‖H(S) − H(Ŝ)‖P = 0 in virtue of
Thm. 1. To measure the size of the GSO perturbation, we denote by
E(S, Ŝ) = {E : PTSP = S+(ES+SE),P ∈ P} the set of relative
errror matrix and define the distance between S and Ŝ as

d(S, Ŝ) = min
E∈E(S,Ŝ)

‖E‖. (5)

In essence, given a set of filter taps h, we want to determine how much
‖H(S)−H(Ŝ)‖P changes in relation to d(S, Ŝ).

We can use a frequency analysis to separate the action of any given
filter on a signal into the effects of the specific filter taps and that of the
underlying graph support. Let S = VΛVH be the eigendecomposition
of the GSO, with V the eigenvector basis {vn}Nn=1 and Λ a diagonal
matrix containing the eigenvalues {λn}Nn=1. The graph Fourier trans-
form (GFT) x̃ of a signal x is computed as its projection onto the eigen-
vector basis of the GSO, x̃ = VHx [26]. Then, the GFT of the output
of a graph filter y = H(S)x becomes

ỹ = VH(H(S)x
)
=
∞∑
k=0

hkΛ
kx̃ = h(Λ)x̃. (6)

where the function h : R→ R is called the filter’s frequency response

h(λ) =

∞∑
k=0

hkλ
k. (7)

We note that since h is an analytic function, its application to a ma-
trix is well defined. From (6) we see that the effect of the filter on the
ith frequency coefficient is given by ỹi = h(λi)x̃i. That is, the fre-
quency content of x at the ith eigenvalue, gets modified by h(λi). This
depends, on one hand, on the specific filter taps that determine the fre-
quency response h(λ) and, on the other hand, on the specific GSO under
consideration that instantiates the frequency response on its eigenvalue
λi. We thus note that the frequency response (7) is independent of the
specific graph support, and only depends on the filter taps h.

We can control the impact of changes in the GSO by carefully de-
signing the frequency response (7). In particular, we focus on filters that
are integral Lipschitz, see Fig. 1a.

Definition 1 (Integral Lipschitz filters). Given filter taps h and fre-
quency response h(λ) [cf. (7)], we say that the corresponding filter is
integral Lipschitz if it satisfies that |h(λ)| ≤ 1 and there exists a con-
stant C > 0 such that for all λ1, λ2 it holds that∣∣h(λ2)− h(λ1)

∣∣ ≤ C |λ2 − λ1|
|λ1 + λ2|/2

. (8)

Integral Lipschitz filters are those whose frequency response is Lips-
chitz with a constant that depends on the midpoint value of the interval.
Alternatively, see that filters that satisfy (8) also satisfy |λh′(λ)| ≤ C,
where h′ is the derivative of h. These are filters that can vary arbi-
trarily fast for λ ≈ 0, but have to be constant for λ → ∞. We also
note that this condition is reminiscent of the scale invariance of wavelet
transforms [27, Ch. 7] [22, 23].

For filters that are integral Lipschitz, we can prove the following
stability result.

Theorem 2 (Stability of graph filters). Let S and Ŝ be two GSOs such
that d(S, Ŝ) ≤ ε where the error matrix E ∈ E(S, Ŝ) has an eigende-
composition E = UMUH. Consider a given set of filter taps h of an
integral Lipschitz filter with constant C. Then,∥∥H(S)−H(Ŝ)

∥∥
P ≤ 2C

(
1 + δ

√
N
)
ε+O(ε2) (9)

with δ := (‖U−V + 1)2 − 1 measuring the eigenvector basis misal-
ingment.

Proof. See [25, Appendix C].

Theorem 2 shows that the change at the output of a graph filter due to
changes in the underlying GSO is proportional to the distance between
those GSOs [cf. (5)]. The proportionality constant can be analyzed
in two separate parts. First, we have the integral Lipschitz constant C
which can be controlled by careful design of the frequency response
(filter taps). Second, (1 + δ

√
N) depends on the specific family of

perturbations and worsens as the graph grows larger. This second part
cannot be controlled and is dependent on the specific perturbations the
graph support will be subject to. However, we can impose a structural
constraint on the perturbation matrix E to obtain a constant that only
depends on C. See [25, Thm. 4] for details.

3. STABILITY OF GRAPH NEURAL NETWORKS

A graph neural network (GNN) is a nonlinear map Φ(S,x) that is ap-
plied to the input x and takes into account the underlying graph by
means of the GSO S. It consists of a cascade of L layers, each of them
applying a graph filter H`(S) followed by a pointwise nonlinearity σ`
(activation function)

x` = σ`
(
H`(S)x`−1

)
(10)

for ` = 1, . . . , L, where x0 = x the input signal, and Φ(S,x) = xL
the output of the last layer [9–11].

The use of graph filters (2) as H`(S) means that GNNs inherit the
properties of permutation equivariance and stability to relative pertur-
bations from them.

Theorem 3 (Permutation equivariance of GNNs). Let S be the GSO
of a graph G and Ŝ = PTSP be the GSO of a permuted version of G.
Likewise, consider signals x and x̂ = PTx. Then,

Φ(Ŝ, x̂) = PTΦ(S,x). (11)

Proof. See [25, Appendix D].

Result in Thm. 3 follows through because the nonlinearities are point-
wise and therefore applied separately to each node, bearing no effect
on the permutation equivariance from graph filters. We note that there



λ̂1λ1 λ̂iλi λ̂NλN

(a) Integral Lipschitz Filter

λ̂N−1λN−1 λ̂NλN

(b) High eigenvalue features

λ̂1λ1 λ̂iλi λ̂NλN

(c) Frequency mixing

Fig. 1. (a) Frequency response for an integral Lipschitz filter (in black), eigenvalues for S (in blue) and eigenvalues for Ŝ (in red). Note that larger
eigenvalues exhibit a larger change. (b) Separating energy located at λN−1 from that at λN requires filters with sharp transitions that are not integral
Lipschitz. Then, a change in eigenvalues renders these filters useless (they are not stable) (c) Applying a ReLU to a signal with all its energy located
at λN results in a signal with energy spread through the spectrum. Information on low eigenvalues can be discriminated in a stable fashion.

are local activation functions involving neighboring exchanges that also
preserve the permutation equivariance property [14].

For the stability result to hold, we need to use pointwise nonlineari-
ties that are normalized Lipschitz, i.e. Lipschitz functions with constant
equal to 1, |σ`(b)− σ`(a)| ≤ |b− a| for all b, a ∈ R, and for all `. We
note that typically used activation functions like ReLU or tanh satisfy
this condition.

Theorem 4 (Stability of GNNs). Let S and Ŝ be two GSOs such that
d(S, Ŝ) ≤ ε where the error matrix E ∈ E(S, Ŝ) has an eigendecom-
position E = UMUH. Consider a GNN Φ with L layers where, in
each layer, σ` is Lipschitz with constant 1 and the filter h` is integral
Lipschitz with constant C`. Then,∥∥Φ(S, ·)−Φ(Ŝ, ·)

∥∥
P ≤ 2C

(
1 + δ

√
N
)
Lε+O(ε2) (12)

with C = max`{C`} and δ := (‖U − V + 1)2 − 1 measuring the
eigenvector basis misalingment.

Proof. See [25, Appendix E].

Thm. 4 proves that GNNs are stable in the sense that, if the constitutive
filters are integral Lipschitz and the activation function is normalized
Lipschitz, then a change of ε in the GSOs causes a change proportional
to ε in the output of the GNNs. The proportionality constant has the
term C that depends on the filter design, and the term (1 + δ

√
N) that

depends on the specific perturbation under consideration. But it also
has a constant factor L that depends on the depth of the architecture.
Therefore, the deeper a GNN is the less stable it becomes. This is due to
how the errors propagate and amplify through subsequent applications
of graph filters.

We have proven that graph filters have the properties of permuta-
tion equivariance and stability to relative graph perturbations, and that
GNNs inherit these properties. We have also observed that the corre-
sponding graph filters have to be integral Lipschitz for stability to hold,
and that the integral Lipschitz constant controls the level of stability.
This observation helps explain why GNNs exhibit better performance
when dealing with signals with relevant high-eigenvalue frequency con-
tent. To see this, consider the following example.

Let S be the GSO of a given graph, and consider the perturbation Ŝ
to be an edge dilation

Ŝ = (1 + ε)S (13)

where all edges are increased proportionally by a factor of ε. Clearly,
E = (ε/2)I and d(S, Ŝ) = ‖E‖ ≤ ε. The eigenvalues are now λ̂n =
(1+ε)λn while the eigenvectors remain the same. We note that, even if
ε is very small, the change in eigenvalues could be large if λn is large,
see Fig. 1a.

To account for this variability in large eigenvalues (even for small
ε) we need to design the frequency response [cf. (7)] so as to absorb
these changes. Otherwise, the output of filtering [cf. (6)] could change
significantly (the values of h(λn) and h(λ̂n) could be very different),
making it unstable. The integral Lipschitz condition on filters, precisely

avoids this problem by forcing the frequency response to be flat for large
eigenvalues, see Fig. 1a.

The cost to pay for stability, however, is that integral Lipschitz fil-
ters are not able to discriminate information located at higher eigenval-
ues (Fig. 1b). In essence, linear filters are either stable or discrimina-
tive, but cannot be both. GNNs on the other hand, incorporate pointwise
nonlinearities at the output of the linear graph filter. This nonlinear op-
eration has a frequency mixing effect by which the energy of the signal
is spilled throughout the spectrum, see Fig. 1c. Then, the energy that
appears in smaller eigenvalues can be arbitrarily discriminated, provid-
ing GNNs a way to stably discriminate signals with large eigenvalue
content. Thus, GNNs are information processing architectures that are
both stable and selective.

Finally, we remark that the above proofs and analysis can be readily
extended to multi-feature signals (graph signal tensors) which assign a
vector of F features to each node, instead of a single scalar. Please,
refer to [25] for details on the multi-feature setting.

4. NUMERICAL EXPERIMENTS

Consider a given dataset of input-output pairs T = {(x,y)} where
x is a graph signal defined on a graph with GSO S. We want to
use a GNN as a nonlinear map between the input x and the output
y. We can thus use the given dataset to fit or train the neural net-
work by finding the filter taps h` that minimize some loss function
minh`

∑
(x,y)∈T L[Φ(S,x),y]. We note that, in the context of train-

ing, the permutation equivariance property of GNNs serves as a form of
data augmentation. More precisely, by exploiting the topological sym-
metries of the underlying graph, the GNN can learn how to process the
signal on all those parts of the graph that are topologically symmetric
by seeing a sample in only one of them.

By minimizing the loss function, we obtain a given set of filter taps
that are a good fit for the data at hand. However, the resulting frequency
responses might not have a good stability constant. To overcome this,
we add a penalty to the loss function in order to control the value of the
stability constant

{h`} = argmin
h`

∑
(x,y)∈T

L
[
Φ(S,x),y

]
+ µ max

λ∈[λa,λb]
|λh′(λ)|. (14)

We note that the bounds of the interval [λa, λb] have to be set before
training begins. One option is to set it to the eigenvalue interval of
the given GSO (this would demand an eigendecomposition, albeit only
once before training begins). Alternatively, we can exploit well-known
bounds relating the eigenvalues with the topology of the graph [28,29].
Furthermore, we note that the computation of the derivative h′(λ) is
straightforward, since it is also a polynomial with the same filter taps
h` that we are optimizing over. Finally, we remark that, by tweaking
the penalty value µ we adjust the trade-off between better performance
and more stability. If µ is too big, then the training would tend to set all
filter taps to 0, which is the trivial but perfectly stable solution.
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Fig. 2. (a) RMSE degradation (in percentage) when the architectures are trained to predict the rating of the movie Star Wars, but are tested on 5 other
movies. We see that, except for the case of Liar, Liar, the RMSE degradation is below 20% with the more stable architecture having a degradation
below 15%. (b) RMSE degradation when testing on GSOs Ŝ that have been synthetically perturbed within a relative distance of ε. The more stable
architecture exhibits a smaller RMSE degradation. (c) RMSE degradation when testing the architectures on different GSOs obtained by changing
the training/test ratio. When we have a ratio similar to that on which the architecture was trained, the RMSE degradation is lower.

In what follows, we consider the problem of movie recommen-
dation systems [30]. We are given a dataset of user ratings for some
movies, and we want to learn how a user would rate a specific movie
given their previous ratings and all other users in the dataset. To do this,
we build a graph where each node is a movie, and the edges are based
on the Pearson correlation coefficient obtained from the pool of users
that have rated any given pair of movies. See [30, Sec. II] for details on
the construction of this graph. We then prune this graph keeping only
the 10 nearest neighbors, we make it undirected by keeping the average
edge weight and we adopt the resulting adjacency matrix as the GSO
S. Additionally, we model each user in the dataset as a graph signal
x, where the value [x]n = xn at node n is the rating that the user has
given to movie n. The ratings are integers between 1 and 5, and if no
rating was given, then we assign xn = 0 to said node.

We consider the MovieLens-100k [31] dataset, that consists of
100, 000 ratings given by 943 users to 1, 582 movies. Following the
above described model, this implies a dataset of 943 graph signals
defined over a graph with 1, 582 nodes. We focus on learning the rating
that any given user would give to a specific movie (node n) based on the
ratings given to other movies (the graph signal x) and the relationship
with other users that have similar taste (given by the graph support S).
We consider all users that have rated the specific movie (have nonzero
value [x]n = xn > 0), take the rating xn as the label y associated to
the signal x and then zero-out the nth entry [x]n = 0 (to render the
rating unknown). Specifically, we choose to estimate the rating at the
movie Star Wars given that is the one with the largest number of ratings.
We use 90% of the resulting dataset for training and 10% for testing
(no samples in the test set are included when estimating the graph).

The map between the graph signal x (ratings for some of the
movies) and the target y = xn (rating for the specific movie) is
parametrized by a single-layer GNN with F1 = 64 output features,
using graph filters with K1 = 5 filter taps, followed by a ReLU non-
linearity. Since the output of this GNN x1 is another graph signal, we
focus particularly on the value of the 64 features at the node n of inter-
est. We further learn a readout layer consisting of a linear combination
of the resulting 64 features at node n so that the final output is a single
scalar predicting the rating given at said node. We note that all opera-
tions involved are local. First, a graph convolutional layer involving the
application of the graph filter bank that demandsK1−1 = 4 exchanges
with the one-hop neighborhood, and then a readout layer consisting of
a linear transformation of the 64 resulting features at the single node of
interest (i.e. no involvement of values at any other node in this readout
layer).

We train this GNN by minimizing the loss function (14), where L
is a smooth L1 loss. We consider two different training cases leading to
two different models. The first one in which there is no penalty (µ =
0) and the second one where we set µ = 0.5. We use the ADAM
optimizer [32] with learning rate 0.005 and forgetting factors β1 = 0.9
and β2 = 0.999. We train for 40 epochs using batches of size 5. In all

subsequent experiments, we report averages over 10 different dataset
split realizations (the split is selected at random) and the corresponding
standard deviation.

For the first experiment, we train the GNNs to estimate the rating
of the movie Star Wars both with no penalty (µ = 0) and with stabil-
ity penalty (µ = 0.5). At test time, we obtain an RMSE of 0.8640
(±0.1674) for the No Penalty GNN, and 0.8655 (±0.1655) for the
Penalty GNN. We then proceed to test these already trained GNNs on
estimating the rating at some other movies, as shown on Fig. 2a. We see
that, except for the case of the movie Liar, liar, the RMSE degradation
for estimating the rating of a movie the GNN was not trained for is be-
low 20%. Moreover, in all cases, the more stable GNN (the one trained
with the penalty) exhibits a degradation below 15% and always better
than the No Penalty GNN.

For the second experiment, we introduce a synthetic relative per-
turbation to the GSO S by randomly generating a GSO Ŝ such that
d(S, Ŝ) ≤ ε [cf. (5)]. We then test on Ŝ the GNNs trained on S for
estimating the rating at node n and compare the RMSE with that ob-
tained when testing on S. The results illustrated in Fig. 2b show that
the Penalty GNN is more stable than the No Penalty one, and that the
gap in RMSE difference increases as the perturbation increases.

Finally, we consider perturbations arising from the randomness in
choosing the training/test set split. Since we use the resulting training
set to create S, a change in the training set selection results in a dif-
ferent Ŝ. In Fig. 2c we show the RMSE difference between testing on
the trained 0.9/0.1 partition and testing on other partitions. Again, we
observe that the Penalty GNN is more stable.

5. CONCLUSIONS

In this work we discussed the stability properties of graph filters and
GNNs. We proved that both are permutation equivariant and are stable
to relative perturbations of the underlying graph support. We observed
that a condition for stability is that graph filters need to have a flat fre-
quency response at large eigenvalues. We then argued that this prevents
graph filters to be able to discriminate features located on these eigen-
values, and that this is a fundamental limitation of graph filters, which
can thus be either stable or selective, but not both. GNNs, on the other
hand, use the frequency mixing effect of nonlinearities to spread the
information content throughout the eigenvalue spectrum, especially on
lower eigenvalues where it can be separated in a stable fashion. Thus,
GNNs are information processing architectures that are both discrim-
inative and stable. The improved performance of GNNs over graph
filters thus becomes more marked when processing signals where the
relevant information content is in high frequencies. Finally, we run ex-
periments on a movie recommendation problem, where we show that
more stable architectures exhibit a better performance when tested on
different conditions than the ones they were trained on.
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