
 
 

Delft University of Technology

Space Filling Curves for MRI Sampling

Sharma, Shubham; Hari, K.V.S.; Leus, Geert

DOI
10.1109/ICASSP40776.2020.9054372
Publication date
2020
Document Version
Final published version
Published in
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Citation (APA)
Sharma, S., Hari, K. V. S., & Leus, G. (2020). Space Filling Curves for MRI Sampling. In ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): Proceedings
(pp. 1115-1119). Article 9054372 IEEE. https://doi.org/10.1109/ICASSP40776.2020.9054372

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICASSP40776.2020.9054372
https://doi.org/10.1109/ICASSP40776.2020.9054372


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



SPACE FILLING CURVES FOR MRI SAMPLING

Shubham Sharma, K.V.S. Hari

Electrical Communication Engineering Dept.
Indian Institute of Science

Bengaluru, India

Geert Leus

Circuits and Systems
Dept. of Microelectronics, EEMCS

Delft University of Technology
Delft, Netherlands

ABSTRACT
A novel class of k-space trajectories for magnetic resonance
imaging (MRI) sampling using space filling curves (SFCs) is
presented here. More specifically, Peano, Hilbert and Sier-
pinski curves are used. We propose 1-shot and 4-shot vari-
able density SFCs by utilizing the space coverage provided
by SFCs in different iterations. The proposed trajectories are
compared with state-of-the-art echo planar imaging (EPI) tra-
jectories for 128 × 128 and 256 × 256 phantom and brain
images. The simulation results show that the readout time is
reduced by up to 45% for the 128 × 128 image with little
compromise in reconstruction quality. Also, the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) index
are improved by 2.32 dB and 0.1009, respectively, with an
18% shorter readout time using the 4-shot Hilbert SFC trajec-
tory for reconstructing a 256× 256 brain MRI image.

Index Terms— MRI, k-space trajectories, space filling
curves

1. INTRODUCTION

Magnetic resonance imaging (MRI) is an important yet time
consuming medical imaging method. The scan time in MRI is
limited due to physical constraints of the system such as gra-
dient limitations, sampling rate constraints and a low signal-
to-noise ratio (SNR). Over the last decades many methods
have been proposed to reduce the scan time to facilitate com-
fort for the patients and to overcome these physical limita-
tions. Methods such as parallel imaging [1–3], rapid acquisi-
tion with relaxation enhancement (RARE) [4], fast low-angle
shot (FLASH) [5], fast imaging with steady state precession
(FISP) [6] and echo planar imaging (EPI) [7] have been ex-
tensively studied and used to reduce the scan time. Recent
developments in compressed sensing (CS) theory [8, 9] also
allow the scan time to be reduced considerably [10, 11]. The
data can now be sampled sparsely and the image can be ob-
tained using non-linear reconstruction methods [12].

From the physics of the system, the signal received can
be directly mapped to the frequency space (2D/3D), known
as the k-space in the MRI community. The path along which
the data is collected in the k-space is called a k-space tra-
jectory and it is governed by the magnetic gradients gi(t),
i = {x, y, z} as ki(t) = γ

∫ t

0
gi(τ)dτ , where γ is the gyro-

magnetic ratio (42.58MHz/T for Hydrogen). The most com-
mon trajectories are Cartesian, spiral [13, 14] and radial [15].
EPI [16] is a Cartesian-based fast scanning method that sam-
ples the complete k-space in a single shot. However, it suffers
from drawbacks like poor image reconstruction quality and
loud acoustic noise which makes the patients uncomfortable.
In recent years, non-Cartesian trajectories have received a lot
of attention as they provide incoherent artifacts with under-
sampling and are more robust to motion [17–19]. The time
taken to traverse the k-space depends on the length of the tra-
jectory. The design of optimal k-space trajectories is still an
open problem in the MRI community, yet some improvements
have been made based on the theory of CS. In this work, we
use space filling curves (SFCs) [20] as trajectories to sample
the k-space and use the CS framework for reconstructing the
image. SFCs have been used previously for designing trajec-
tories for MRI as a method to reduce the acoustic noise [21].
In that paper, the authors use a Hilbert-Moore SFC (a modi-
fied Hilbert SFC) trajectory which is observed to be robust to
eddy currents. We explore SFC-based trajectories further to
reduce the readout time.

2. SPACE FILLING CURVES

An SFC provides a continuous mapping from a compact in-
terval I to a multidimensional space Rn such that the curve
passes through every point in the space Rn exactly once.
These curves are constructed iteratively as a sequence of con-
tinuous piecewise linear curves. Depending on the shape of
the curve, SFCs can be of different kinds, e.g., Peano, Hilbert,
Sierpinski, Dragon, Gosper and others. The Hilbert curve is
the most commonly used in a variety of applications. Figure 1
shows Peano, Hilbert and Sierpinski SFCs up to 3 iterations.
To construct these figures, we consider 2D space and use a
recursive method for generating the SFCs.

2.1. Variable density SFCs for k-space sampling

Variable density (VD) sampling is an integral part of design-
ing k-space trajectories. This is because the center of the k-
space contains more energy than the boundary region. An-
other theory supporting VD sampling of k-space comes from
the varying sparsity depending on the scale of the wavelet ba-
sis under a CS framework. To take care of this, we propose
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Fig. 1: Various space filling curves up to three iterations.

variable density SFCs that sample the region near the center
of the k-space with an SFC at an iteration higher than the SFC
near the boundary region. This results in more points at the
center region of the k-space compared to the boundary region.

VD SFCs are constructed by first dividing the k-space into
multiple sections as shown in Fig. 2(a). The section at the
center of the k-space is traversed using an SFC with Ic itera-
tions. This section extends from −kmax/2 to +kmax/2 along
both axes. The boundary of the k-space is divided into 12
smaller sections. Each section is traversed using an SFC with
Ib, where Ib < Ic. Figure 3 shows examples of VD Peano,
Hilbert and Sierpinki SFCs. In each case, the SFC with Ib iter-
ations is taken as reference and is rotated and/or flipped such
that the ending point of the SFC in one section is nearest to the
starting point of the next section. The transformations related
to the various SFCs are different from others as the starting
and ending points vary according to the SFC considered. For
example, in the Peano curve, the starting and ending points
are diagonal to each other. In case of the Hilbert curve, they
are at adjacent corners of the space. In the Sierpinski curve,
the starting and ending points are the same and hence, there
is a line across one section to reach the next section. Further,
fine sampling of the center of the k-space is also done for a
better image reconstruction in all cases.

2.2. Multi-shot VD SFCs for k-space sampling
In MRI, the intensity of the received signal reduces with time
during each excitation. Hence, for the reconstruction of im-
ages of higher resolution (256×256 or 512×512), the k-space
is traversed using multiple RF excitations and the trajectory
is known as a multi-shot trajectory. To construct multi-shot
SFC trajectories, the k-space is divided into four quadrants
as shown in Fig. 2(b). Each quadrant is to be traversed sep-

(a) (b)
Fig. 2: Construction of (a) single-shot VD SFC trajectories;
(b) 4-shot VD SFC trajectories.

arately using a VD SFC trajectory. To do this, each quadrant
is further divided into four sections. The section near the cen-
ter of the k-space is traversed with an SFC of Ic iterations.
The remaining three sections are traversed using an SFC with
Ib iterations (Ib < Ic). Similar to the VD SFC described in
the previous section, the reference SFC of Ib iterations is ro-
tated and/or flipped to obtain continuity while moving from
one section to the next. Figure 4 shows examples of 4-shot
VD SFCs based on Peano, Hilbert and Sierpinski curves. As
before, the center of the k-space is again fine sampled.

2.3. EPI trajectory
An EPI trajectory scans the complete k-space uniformly in
a single RF excitation (single-shot). EPI covers the k-space
line-by-line using small blips in the gradient to move to the
next line. For high resolution images, a larger k-space is sam-
pled using a multi-shot EPI trajectory. This uses multiple RF
excitations to traverse the k-space in parts.

2.4. Feasible trajectory
The hardware and the safety concern in an MRI machine re-
strict the amount of current through the gradient coils result-
ing in gradient constraints of maximum amplitude (Gmax)
and slew rate (Smax). As a result, the traversal of the k-space
trajectories will be limited in velocity (vmax = γGmax) and
acceleration (amax = γSmax). The SFC and EPI trajectories
are defined by a few control points and are infeasible. The
actual points to be sampled along these trajectories such that
they satisfy the aforementioned constraints are obtained by
the optimal control-based method proposed in [22], known as
the time-optimal control (TOC) method. This method pro-
vides the fastest gradients to traverse a given trajectory with
given start and end points and hence it results in a variable ve-
locity. For this method, the trajectory near the sharper edges
will be traversed more slowly than along the smoother parts.
This happens because near the sharp edges the slew rate con-
straint is not satisfied and the trajectory needs to be traversed
slower. This means there are more sample points near the
sharp edges than along the smoother parts.

3. NUMERICAL EXPERIMENTS
3.1. Reconstruction using compressed sensing

MR images are sparse in the wavelet, finite differences and
DCT domains. By the physics of the system, the sampling is
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Trajectory Ic Ib Time (ms) SSIM PSNR
Peano 2 1 50.34 0.8419 25.41 dB
Peano 3 1 84.44 0.9858 35.72 dB
Peano 3 2 139.86 0.9996 53.21 dB
Hilbert 3 2 63.99 0.9204 31.59 dB
Hilbert 4 2 80.41 0.9829 38.75 dB
Hilbert 4 3 130.55 0.9991 49.90 dB
Hilbert 5 2 127.03 0.9984 43.81 dB

Sier. 3 1 62.15 0.9465 32.22 dB
Sier. 3 2 77.19 0.9820 38.22 dB
Sier. 4 1 97.62 0.9938 38.53 dB
Sier. 4 2 112.67 0.9983 46.08 dB
EPI - - 141.86 0.9926 52.07 dB

Table 1: Reconstruction performance for the 128 × 128
Shepp-Logan phantom image.

in the frequency domain (k-space). Under this setup, the use
of CS techniques was proposed in [10] such that an under-
sampled k-space can be used to reconstruct a 2D image X as
follows:
X̂ = argmin

X
||NFFT(X)−Y||22+λ1||W(X)||1+λ2||X||TV

where Y is the observed k-space data, NFFT is the nonuni-
form fast Fourier transform, W(·) is the wavelet transform
and || · ||TV is the total variation (TV) norm. This problem
is solved using non-linear conjugate gradient with a fast and
cheap backtracking line-search [10, 23].

3.2. Simulation setup
We compare the image reconstruction quality by two mea-
sures: structural similarity (SSIM) index and peak signal-
to-noise ratio (PSNR). SSIM provides a comparison in per-
ception of the two images and PSNR is a measure of the er-
ror in intensity values. The performances of single-shot EPI
and VD SFC trajectories are compared for reconstructing the
128 × 128 Shepp-Logan phantom using different iterations.
The performances of 4-shot SFC trajectories are compared
for two 256× 256 images: a realistic brain phantom [24] and
a T1-weighted sagittal brain MRI image as shown in Fig. 4(a).
To obtain the feasible trajectories, the gradient constraints
used are Gmax = 40mT/m and Smax = 150mT/m/ms which
is standard for 3T MRI machines. The sampling duration is
taken as ts = 0.004 ms. The k-space data along different
trajectories is calculated by taking the inverse Fourier trans-
form of the image. The image is then reconstructed using
the CS method described above. All simulations have been
performed in MATLAB 2017b. In a practical scenario, the
gradients start and end from zero. Hence, all the trajectories
used for simulations are designed to start and end at the center
of the k-space.

3.3. Simulation results and discussion
We compare the readout times and reconstruction perfor-
mance for single-shot VD SFCs of different Ics and Ibs for
the 128 × 128 Shepp-Logan phantom image in Table 1. The
center of the k-space is sampled densely in each case. With
increasing iterations, the readout time increases, resulting in
better reconstruction performance. These are also compared

Time = 141.86 ms

SSIM = 0.9926

 PSNR = 52.07 dB

Time = 139.86 ms

SSIM = 0.9996

 PSNR = 53.67 dB

Time = 127.03 ms

SSIM = 0.9983

 PSNR = 43.65 dB

Time = 112.67 ms

SSIM = 0.9982

 PSNR = 45.8 dB

(a) 1-shot EPI (b) 1-shot VD Peano

SFC (I
c
 = 3, I

b
 = 2)

(c) 1-shot VD Hilbert

SFC (I
c
 = 5, I

b
 = 2)

(d) 1-shot VD Sierpinski

SFC (I
c
 = 4, I

b
 = 2)

Fig. 3: Performance comparison of 1-shot VD SFC trajecto-
ries with EPI for reconstructing the 128 × 128 Shepp-Logan
phantom image.

Traj. Ic Ib Time (ms) SSIM PSNR SSIM PSNR
Peano 3 1 34.19 0.5119 22.29 dB 0.6160 24.74 dB
Peano 3 2 48.10 0.5163 22.77 dB 0.6214 24.65 dB
Peano 4 1 159.03 0.9788 33.68 dB 0.9534 34.57 dB
Hilbert 6 3 58.12 0.7500 29.43 dB 0.7678 29.01 dB
Hilbert 6 4 70.59 0.7830 31.17 dB 0.7871 29.70 dB
Hilbert 6 5 105.32 0.7821 31.32 dB 0.7842 29.64 dB

Sier. 5 3 55.46 0.5797 23.67 dB 0.7158 27.39 dB
Sier. 5 4 81.87 0.6043 23.99 dB 0.7110 27.47 dB
Sier. 6 1 113.53 0.9763 33.26 dB 0.9517 34.43 dB
EPI - - 71.66 0.6548 28.26 dB 0.6669 26.69 dB

Table 2: Reconstruction performance for the 256× 256 real-
istic brain phantom and MRI images.

with the single-shot EPI trajectory which provides an SSIM
and PSNR of 0.9926 and 52.07 dB with a readout time of
141 ms. A similar performance is observed using different
SFCs, for example, the VD Peano trajectory (Ic = 3, Ib = 2)
gives the same performance for the same readout time. The
Hilbert (Ic = 5, Ib = 2) and the Sierpinski (Ic = 4, Ib = 2)
trajectories also provide similar reconstruction performance
yet with shorter readout times. These trajectories and re-
constructed images are shown in Fig. 3. Note that the EPI
trajectory shown in the figure is displayed with less lines for
clarity. The EPI trajectory used actually samples 128 lines
in the k-space. Also, using the Peano (Ic = 3, Ib = 1), the
Hilbert (Ic = 4, Ib = 2) and the Sierpinski (Ic = 3, Ib = 2)
trajectories, with little compromise in the reconstruction per-
formance in terms of SSIM, readout time is significantly
reduced.

For the 256× 256 images, 4-shot versions of the EPI and
SFC trajectories are compared in Table 2. The readout times
shown in the table are per shot. The EPI trajectory takes
71 ms per shot to provide an SSIM of 0.6548 and a PSNR
of 28.26 dB for the realistic brain phantom image. For the
brain MRI image it provides an SSIM and PSNR of 0.6669
and 26.69 dB, respectively. The 4-shot VD SFC trajectories
are created with different Ics and Ibs. Similar to the previous
case, with increasing iterations in SFC the readout time in-
creases with an improvement in reconstruction performance.
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(a) Reference
Images

(b) 4-shot VD EPI (c) 4-shot VD Peano
SFC (I

c
 = 3, I

b
 = 2)

(d) 4-shot VD Hilbert
SFC (I

c
 = 6, I

b
 = 3)

(e) 4-shot VD Sierpinski
SFC (I

c
 = 5, I

b
 = 3)

Fig. 4: Performance comparison of 4-shot (b) EPI, (c) VD Peano SFC, (d) VD Hilbert SFC, (e) VD Sierpinsky SFC trajectories
for reconstructing the 256× 256 analytical brain phantom image and a brain MRI image.

The Peano trajectory does not result in a readout time close
to what is achieved with EPI due to its design. Using the
4-shot VD Hilbert trajectory (Ic = 6, Ib = 4), for a simi-
lar readout time, the reconstruction performance is improved
significantly for both images. It also provides improved per-
formance for Ic = 6, Ib = 3 with a reduction in readout time
at the same time. The 4-shot Sierpinski trajectory improves
the reconstruction performance for the brain MRI image for a
shorter readout time of 55 ms (reduction by 22%) for Ic = 5,
Ib = 3. These trajectories and their reconstructed images are
shown in Fig. 4.

We study the density of points, i.e, the number of points
per unit square area on the k-space. The density of points in
an area will depend on the iteration number of the SFC used
to construct the trajectory since an SFC with more iterations
is more dense. In general, as one moves from the center to
the boundary, the density of points decreases. A normalized
density plot for the three SFC trajectories shown in Fig. 4 is
given in Fig. 5. The k-space is divided in 20 square units
and the number of sample points in each are found for each
trajectory. The 9th row (center) is plotted in the figure. Due
to dense sampling near the center, we see more points in the
middle of the curves.

4. CONCLUSION

The performance of different SFCs as k-space trajectories
for sampling in MRI under a CS scheme has been investi-

5 10 15 20

Bin on k
x

0

0.5

1

D
e
n
s
it
y

Peano

Hilbert

Sierpinski

Fig. 5: Density of sample points in the k-space covered by
4-shot VD Peano, Hilbert and Sierpinski trajectories.

gated here. Variable density muti-shot SFCs have been pro-
posed to reconstruct high resolution MRI images. SFCs with
different iterations provide trajectories with different readout
time and reconstruction performance. The performance of
the proposed trajectories is compared with the state-of-the-
art EPI trajectory. Compared to the EPI trajectory, VD Hilbert
SFCs are able to improve the reconstruction performance with
about 19% shorter readout time. For applications such as dy-
namic cardiac imaging and real-time speech MRI, the pro-
posed Hilbert SFCs will be useful.
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