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Classifying Partially Labeled Networked Data via
Logistic Network Lasso
Nguyen Tran, Henrik Ambos and Alexander Jung

Abstract—We apply the network Lasso to classify partially
labeled data points which are characterized by high-dimensional
feature vectors. In order to learn an accurate classifier from lim-
ited amounts of labeled data, we borrow statistical strength, via
an intrinsic network structure, across the dataset. The resulting
logistic network Lasso amounts to a regularized empirical risk
minimization problem using the total variation of a classifier
as a regularizer. This minimization problem is a non-smooth
convex optimization problem which we solve using a primal-
dual splitting method. This method is appealing for big data
applications as it can be implemented as a highly scalable message
passing algorithm.

I. INTRODUCTION

The least absolute shrinkage and selection operator (Lasso)
has been extended to networked data recently. This extension,
coined the “network Lasso” (nLasso), allows efficient process-
ing of massive datasets using convex optimization methods [1].

Most of the existing work on nLasso-based methods focuses
on predicting numeric labels (or target variables) within regres-
sion problems [1]–[7]. In contrast, we apply nLasso to binary
classification problems which assign binary-valued labels to
data points [8]–[10].

In order to learn a classifier from partially labeled networked
data, we minimize the logistic loss incurred on a training
set constituted by few labeled nodes. Moreover, we aim at
learning classifiers which conform to the intrinsic network
structure of the data. In particular, we require classifiers to be
approximately constant over well-connected subsets (clusters)
of data points. This cluster assumption lends naturally to
regularized empirical risk minimization with the total variation
of the classifier as regularization term [11]. We solve this non-
smooth convex optimization problem by applying the primal-
dual method proposed in [12], [13].

The proposed classification method extends the toolbox
for semi-supervised classification in networked data [14]–
[18]. In contrast to label propagation (LP), which is based
on the squared error loss, we use the logistic loss which is
more suitable for classification problems. Another important
difference between LP methods and nLasso is the different
choice of regularizer. Indeed, LP uses the Laplacian quadratic
form while the nLasso uses total variation for regularization.

Using a (probabilistic) stochastic block model for networked
data, a semi-supervised classification method is obtained as an
instance of belief propagation method for inference in graph-
ical models [15]. In contrast, we assume the data (network-)
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structure as fixed and known. The proposed method provides
a statistically well-founded alternative to graph-cut methods
[16]–[18]. While our approach is based on a convex optimiza-
tion (allowing for highly scalable implementation), graph-cuts
is based on combinatorial optimization which makes scaling
them to large datasets more challenging. Moreover, while
graph-cut methods apply only to data which is characterized
by network structure and labels, our method allows to exploit
additional information provided by feature vectors of data
points.

Contribution: Our main contributions are: (i) We present
a novel implementation of logistic network Lasso by applying
a primal-dual method. This method can be implemented as
highly scalable message passing on the network structure un-
derlying the data. (ii) We prove the convergence of this primal-
dual method and (iii) verify its performance on synthetic
classification problems in chain and grid-structured data.

Notation: Boldface lowercase (uppercase) letters denote
vectors (matrices). We denote xT the transpose of vector x.
The `2-norm of a vector x is ‖x‖ =

√
xTx. The convex conju-

gate of a function f is defined as f∗(y) = supx(yTx−f(x)).
We also need the sigmoid function σ(z) := 1/(1 + exp(−z)).

II. PROBLEM FORMULATION

We consider networked data that is represented by an undi-
rected weighted graph (the “empirical graph”) G = (V, E ,A).
A particular node i ∈ V = {1, . . . , N} of the graph represents
an individual data point (such as a document, or a social
network user profile).1 Two different data points i, j ∈ V
are connected by an undirected edge {i, j} ∈ E if they are
considered similar (such as documents authored by the same
person or social network profiles of befriended users). For ease
of notation, we denote the edge set E by {1, . . . , E := |E|}.

Each edge e = {i, j} ∈ E is endowed with a positive weight
Ae = Aij > 0 which quantifies the amount of similarity
between data points i, j ∈ V . The neighborhood of a node
i ∈ V is N (i) := {j : {i, j} ∈ E}.

Beside the network structure, datasets convey additional
information in the form of features x(i) ∈ Rd and labels
y(i) ∈ {−1, 1} associated with each data point i ∈ V . In
what follows, we assume the features to be normalized such
that ‖x(i)‖ = 1 for each data points i ∈ V . While features are
typically available for each data point i ∈ V , labels are costly
to acquire and available only for data points in a small training
set M = {i1, . . . , iM} containing M labeled data points.

1With a slight abuse of notation, we refer by i ∈ V to a node of the
empirical graph as well as the data point which is represented by that node.
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We model the labels y(i) of the data points i ∈ V as
independent random variables with (unknown) probabilities

p(i) := Prob{y(i) =1} =
1

1 + exp(−(w(i))Tx(i))
. (1)

The probabilities {p(i)}i∈V are parametrized by some (un-
known) weight vectors w(i). Our goal is to develop a method
for learning an accurate estimate ŵ(i) of the weight vector
w(i). Given the estimate ŵ(i), we can compute an estimate
p̂(i) for the probability p(i) by replacing w(i) with ŵ(i) in (1).

We interpret the weight vectors as the values of a graph
signal w : V → Rd assigning each node i ∈ V of the empirical
graph G the vector w(i) ∈ Rd. The set of all vector-valued
graph signals is denoted C :={w : V → Rd : i 7→ w(i)}.

Each graph signal ŵ ∈ C defines a classifier which maps a
node with features x(i) to the predicted label

ŷ(i) =

{
1 if

(
ŵ(i)

)T
x(i) > 0

−1 otherwise.
(2)

Given partially labeled networked data, we aim at leaning a
classifier ŵ ∈ C which agrees with the labels y(i) of labeled
data points in the training set M. In particular, we aim at
learning a classifier having a small training error

Ê(ŵ) :=(1/M)
∑
i∈M

`((ŵ(i))T x̃(i)) (3)

with x̃(i) := y(i)x(i) and the logistic loss

`(z) := log(1 + exp(−z)) = −log(σ(z)). (4)

III. LOGISTIC NETWORK LASSO

The criterion (3) by itself is not enough for guiding the
learning of a classifier w since (3) completely ignores the
weights ŵ(i) at unlabeled nodes i ∈ V \ M. Therefore, we
need to impose some additional structure on the classifier ŵ.
In particular, any reasonable classifier ŵ should conform with
the cluster structure of the empirical graph G [19].

We measure the extend of a classifier ŵ ∈ C conforming
with the cluster structure of G by the total variation (TV)

‖w‖TV :=
∑
{i,j}∈E

Aij‖w(j) −w(i)‖. (5)

A classifier ŵ ∈ C has small TV if the weights ŵ(i) are
approximately constant over well connected subsets (clusters)
of nodes.

We are led quite naturally to learning a classifier ŵ via the
regularized empirical risk minimization (ERM)

ŵ ∈ argmin
w∈C

Ê(w) + λ‖w‖TV. (6)

We refer to (6) as the logistic nLasso (lnLasso) problem. The
parameter λ in (6) allows to trade-off small TV ‖ŵ‖TV against
small error Ê(ŵ) (cf. (3)). The choice of λ can be guided by
cross validation [20].

Note that lnLasso (6) does not enforce directly the labels
y(i) to be clustered. Instead, it requires the classifier ŵ, which
parametrizes the probability distributed of the labels y(i) (see
(1)), to be clustered.

It will be convenient to reformulate (6) using vector nota-
tion. We represent a graph signal w ∈ C as the vector

w = ((w(1))T , . . . , (w(N))T )T ∈ RdN . (7)

Define a partitioned matrix D ∈ R(dE)×(dN) block-wise as

De,i =


AijId e = {i, j}, i < j

−AijId e = {i, j}, i > j

0 otherwise,

(8)

where Id ∈ Rd×d is the identity matrix. The term Aij(w
(i)−

w(j)) in (5) is the e-th block of Dw. Using (7) and (8), we
can reformulate the lnLasso (6) as

ŵ ∈ argmin
w∈RdN

h(w) + g(Dw), (9)

with

h(w) = Ê(w) and g(u) := λ

E∑
e=1

‖u(e)‖ (10)

with stacked vector u = (u(1), . . . ,u(E)) ∈ RdE .

IV. PRIMAL-DUAL METHOD

The lnLasso (9) is a convex optimization problem with
a non-smooth objective function which rules out the use
of gradient descent methods [21]. However, the objective
function is highly structured since it is the sum of a smooth
convex function h(w) and a non-smooth convex function
g(Dw), which can be optimized efficiently when considered
separately. This suggests to use a proximal splitting method
[12], [22], [23] for solving (9). One particular such method
is the preconditioned primal-dual method [24] which is based
on reformulating the problem (9) as a saddle-point problem

min
w∈RdN

max
u∈RdE

uTDw + h(w)− g∗(u), (11)

with the convex conjugate g∗ of g [12].
Solutions (ŵ, û) of (11) are characterized by [25, Thm 31.3]

−DT û ∈ ∂h(ŵ)

Dŵ ∈ ∂g∗(û). (12)

This condition is, in turn, equivalent to

ŵ −TDT û ∈ (IdN + T∂h)(ŵ),

û + ΣDŵ ∈ (IdE + Σ∂g∗)(û), (13)

with positive definite matrices Σ ∈ RdE×dE ,T ∈ RdN×dN .
The matrices Σ,T are design parameters whose choice will
be detailed below. The condition (13) lends naturally to the
following coupled fixed point iterations [24]

wk+1 =(I+T∂h)−1(wk−TDTuk) (14)

uk+1 =(I+Σ∂g∗)−1(uk+ΣD(2wk+1−wk)). (15)

The update (15) involves the resolvent operator

(I+Σ∂g∗)−1(v)=argmin
v′∈RdE

g∗(v′)+(1/2)‖v′−v‖2Σ−1 , (16)

where ‖v‖Σ :=
√

vTΣv. The convex conjugate g∗ of g (see
(10)) can be decomposed as g∗(v) =

∑E
e=1 g

∗
2(v(e)) with the
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convex conjugate g∗2 of the scaled `2-norm λ‖.‖. Moreover,
since Σ is a block diagonal matrix, the e-th block of the
resolvent operator (IdE + Σ∂g∗)−1(v) can be obtained by
the Moreau decomposition as [26, Sec. 6.5]

((IdE + Σ∂g∗)−1(v))(e)

(16)
= argmin

v′∈Rd

g∗2(v′)+(1/(2σ(e)))‖v′−v(e)‖2

= v(e)−σ(e)(Id+(λ/σ(e))∂‖.‖)−1(v(e)/σ(e))

=

{
λv(e)/‖v(e)‖ if ‖v(e)‖ > λ

v(e) otherwise,

where (a)+ =max{a, 0} for a ∈ R.
The update (14) involves the resolvent operator (I+T∂h)−1

of h (see (3) and (10)), which does not have a closed-form
solution. Choosing T = diag{τ (i)Id}Ni=1, we can solve (14)
approximately by a simple iterative method [27, Sec. 8.2].
Settingw :=wk−TDTuk, the update (14) becomes

w
(i)
k+1 :=argmin

w̃∈Rd

2`(w̃T x̃(i))+(M/τ (i))‖w̃−w(i)‖2. (17)

If the matrices Σ and T satisfy

‖Σ1/2DT1/2‖2 < 1, (18)

the sequences obtained from iterating (14) and (15) converge
to a saddle point of the problem (11) [24, Thm. 1]. The con-
dition (18) is satisfied for the choice Σ = {(1/(2Ae))Id}e∈E
and {(τ/d(i))Id}i∈V , with node degree d(i) =

∑
j 6=iAij and

some τ < 1 [24, Lem. 2].
Solving (17) is equivalent to the zero-gradient condition

−x̃(i)σ(−(w(i))T x̃(i)) + (M/τ (i))(w(i)−w(i)) = 0. (19)

The solutions of (19) are fixed-points of the map

Φ(i)(u) = w(i) + (τ (i)/M)x̃(i)σ(−uT x̃(i)). (20)

Lemma 1. The mapping Φ(i) (20) is Lipschitz with constant
βi = τ (i)‖x(i)‖2/M .

Proof. For any a, b ∈ R,∣∣1/(1 + exp(a))−1/(1+exp(b))
∣∣ ≤ |a−b|

which implies∣∣σ(−uT x̃(i))−σ(−vT x̃(i))
∣∣ ≤ ‖x(i)‖‖u− v‖,

and, in turn,

‖Φ(i)(u)−Φ(i)(v)‖ ≤ (τ (i)‖x̃(i)‖/M)‖x(i)‖‖u− v‖
= βi‖u− v‖.

We approximate the exact update (17) with

ŵ
(i)
k+1 = Φ(i) ◦ . . . ◦Φ(i)︸ ︷︷ ︸

d2 log(k)/ log(1/βi)e

(w(i)). (21)

According to [28, Thm. 1.48], for τ (i)<M/‖x(i)‖2 the error
incurred by replacing (17) with (21) satisfies

ek = ‖ŵ(i)
k+1 −w

(i)
k+1‖ ≤ 1/k2. (22)

Given the error bound (22), as can be verified using [13,
Thm. 3.2], the sequences obtained by (14) and (15) when
replacing the exact update (17) with (21) converge to a saddle-
point of (11) and, in turn, a solution of lnLasso (9).

Algorithm 1 lnLasso via primal-dual method

Input: G = (V, E ,A), {x(i)}i∈V , M, {y(i)}i∈M, λ, D,
Σ = diag{σ(e) = 1/(2Ae)Id}Ee=1, T = diag{τ (i) =
0.9/d(i)Id}i∈V , βi = τ (i)/|M|

Initialize: k :=0, ŵ0 :=0, û0 :=0
1: repeat
2: ŵk+1 := ŵk −TDT ûk
3: for each labeled node i ∈M do
4:

ŵ
(i)
k+1 := Φ(i) ◦ . . . ◦Φ(i)︸ ︷︷ ︸

d2 log(k)/ log(1/βi)e

(ŵ
(i)
k+1)

5: end for
6: u := uk + ΣD(2ŵk+1 − ŵk)

7: û
(e)
k+1 = u(e) −

(
1− λ

‖u(e)‖

)
+

u(e) for e ∈ E

8: k :=k+1
9: until stopping criterion is satisfied

Output: (ŵk, ûk).

V. NUMERICAL EXPERIMENTS

We assess the performance of lnLasso Alg. 1 on datasets
whose empirical graph is either a chain graph or a grid graph.

A. Chain

For this experiment, we generate a dataset whose empirical
graph is a chain consisting of N=400 nodes which represent
individual data points. The chain graph is partitioned into 8
clusters, Cr = {r · 50 + 1, . . . , r · 50 + 50}, for r = 0, . . . 7.
The edge weights Aij are set to 100 if nodes i and j belong
to the same cluster and 1 otherwise.

All nodes i ∈ Cr in a particular cluster Cr share the same
weight vector w(r) ∼ N (0, I) which is generated from a
standard normal distribution. The feature vectors x(i) ∈ R3

are generated i.i.d. using a uniform distribution over [0, 1]3.
The true node labels y(i) are drawn from the distribution (1).
The training set is obtained by independently selecting each
node with probability (labeling rate) p.

We apply Alg. 1 to obtain a classifier ŵ which allows to
classify data points as ŷ(i) = sign((ŵ(i))Tx(i)). In order to
assess the performance of Alg. 1 we compute the accuracy
within the unlabeled nodes, i.e., the ratio of the number of
correct labels achieved by Alg. 1 for unlabeled nodes to the
number of unlabeled nodes,

ACC :=
(
1/(N −M)

)
|{i : y(i) = ŷ(i), i /∈M}|. (23)

We compute the accuracy of Alg. 1 for different choices of
p ∈ {0.1, . . . , 0.9} and λ ∈ {10−5, . . . , 10−1}. For a pair of
{λ, p}, we repeat the experiment 100 times and compute the
average accuracy.

The accuracies obtained for varying labeling rates p and
lnLasso parameter λ is plotted in Fig. 1. As indicated in Fig. 1,
the accuracy increases with labeling rate p which confirms the
intuition that increasing the amount of labeled data (training
set size) supports the learning quality.

The accuracies in Fig. 1 are low since the classifier assigns
the labels to nodes based on (2) while the true labels are
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drawn from the probabilistic model (1). Indeed, we also plot in
Fig. 1 the optimal accuracy, determined by the average of the
probability to assign nodes i to their true label when knowing
p(i) using (1), as a horizontal dashed line. Fig. 1 shows that
accuracies increase with labeling rate p and tends toward the
optimal accuracy.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
labeling rate p

0.54

0.56

0.58

0.60

0.62

0.64

Accuracy
= 1e-05
= 1e-04
= 1e-03
= 1e-02
= 1e-01

optimal accuracy

Fig. 1: The classification accuracy for chain-structured data.

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

no
nl

ab
el

ed
 n

od
e 

ac
cu

ra
cy

= 1e-05
= 1e-04
= 1e-03
= 1e-02
= 1e-01

optimal accuracy

Fig. 2: The convergence rate of Alg. 1 for chain structured
data and labeling rate p = 0.4.

In Fig. 2, we plot the accuracy (cf. (23)) as a function of
the number of iterations used in Alg. 1 for varying lnLasso
parameter λ and fixed labeling rate p=4/10. Fig. 2 illustrates
that, for a larger value of λ, e.g. λ = 10−1 or 10−2, Alg. 1
tends to deliver a classifier with better accuracy than that of
smaller λ, e.g. λ = 10−4 or 10−5. This proves that taking
into account the network structure is beneficial to classify
a networked data. Moreover, it is shown in Fig. 2 that the
accuracies do not improve after few iterations. This implies
that lnLasso can yields a reasonable accuracy after a few
number of iterations.

B. Grid

In the second experiment, we consider a grid graph with
N = 20× 20 = 400 nodes. The graph is partitioned into

4 clusters which are grid graphs of size 10 × 10. Similar
to the chain, the edge weights Aij = 100 if nodes i and
j belong to the same cluster and Aij = 1 otherwise. The
average accuracies are plotted in Fig. 3 which also shows that
the accuracy increases with the labeling rate p. We also plot
the accuracy (cf. (23)) over iterations of Alg. 1 for different
values of λ with p = 0.4 in Fig. 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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= 1e-01
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Fig. 3: The classification accuracy for grid-structured data.
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Fig. 4: The convergence rate of Alg. 1 for grid structured data
and labeling rate p = 0.4.
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