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ABSTRACT

Intelligent Reflecting Surface (IRS) has been a promising solution
to enhance wireless networks both spectral-efficiently and energy-
efficiently. This paper considers an IRS-assisted the Internet of
Things network for massive connectivity. We aim to solve the IRS-
related activity detection and channel estimation problem which
has not been studied before. In this paper, we formulate the IRS-
related activity detection and channel estimation problem as sparse
matrix factorization, matrix completion and Multiple Measurement
Vector problem and, we propose a three-stage framework based
on the approximate message passing. Simulation results verify the
effectiveness of the proposed algorithm.

Index Terms— Intelligent reflecting surface, device activity de-
tection, channel estimation, compressed sensing, and approximate
message passing.

1. INTRODUCTION

Intelligent Reflecting Surface (IRS) has recently emerged as a
promising new technology for enhancing wireless communications
both spectral-efficiently and energy-efficiently by controlling the
propagation environment [1–3]. Specifically, IRS is a planar surface
consisting of a massive number of passive and programmable ele-
ments reflecting incident signals with phase shifts [3]. By smartly
tuning the phase shifts, an IRS is able to reconfigure propagation
environments for constructive signal combination and interference
cancellation at the receivers, thereby enhancing the communication
performance [3].

To fully explore the benefits of IRS, the acquisition of the chan-
nel state information (CSI) plays a critical role in passive beam-
forming. [4, 5] proposed to estimate IRS-related channels based on
training signals sent by transmitter or receiver. Assuming the per-
fect CSI, [6, 7] studied the problem of minimizing the base station
(BS) transmit power by jointly optimizing the active beamforming
at the BS and passive beamforming at the IRS. Furthermore, IRS
has been jointly designed with other existing technologies, e.g., non-
orthogonal multiple access (NOMA) [8] and over-the-air computa-
tion [9]. In particular, the IRS-related channel capacity characteriza-
tion is studied in [10]. However, there’s no work on the use of IRS
for providing massive device connectivity for the Internet of Things
(IoT). In this paper, we propose to equip the IoT network with an
IRS in order to support massive device connectivity.

Massive device connectivity has been identified as one of the
three main use cases in the upcoming 5G network, along with en-
hanced mobile broadband and ultra-reliable, low-latency communi-
cations [11, 12]. In such a scenario, a large number of mobile devices
are connected to the Internet via the BS with sporadic communica-
tions, e.g., only a small fraction of connected devices are active [13].

To overcome the challenge of detecting active devices and estimat-
ing their channels, [14, 15] studied the activity detection and channel
estimation problem for massive connectivity from the view of infor-
mation theory. By exploiting the sparse activity pattern, the problem
is formulated as a compressed sensing problem and resolved by the
approximate message passing (AMP) [16, 17]. However, all these
works treated the communication channels as an uncontrollable en-
vironment, and in some cases, harsh propagation environments can
significantly degrade the system performance [2]. Hence, we shall
propose an IRS-assisted IoT network for massive connectivity to im-
prove propagation environment.

In this paper, we consider an uplink IRS-assisted IoT network,
where a single BS serves a massive number of mobile devices with
the assist of an IRS. Specifically, our goal is to jointly detect active
devices and estimate the IRS-related channels. We call this problem
as the IRS-related activity detection and channel estimation problem.
In fact to our best knowledge, the problem has not been studied in the
prior works. Due to unfavorable propagation conditions, the direct
link between the BS and the devices has negligible received signals
and thus we ignore the device-BS channel [1, 18, 19]. However,
deployment of an IRS poses new challenges, e.g., passive elements
on the IRS can not process incident signals and there are more links
to estimate [4, 5, 10]. To overcome these challenges, we formulate
the IRS-related activity detection and channel estimation problem as
sparse matrix factorization [20, 21], matrix completion and Multi-
ple Measurement Vector (MMV) problem [22]. To solve the prob-
lem, we propose a three-stage framework based on the approximate
message passing (AMP) including the BiG-AMP algorithm [23] for
sparse matrix factorization, the Singular Value Thresholding (SVT)
algorithm [24] for matrix completion and the Vector AMP algorithm
[16] for the MMV problem. Simulation results demonstrate that the
propose algorithm can achieve IRS-related device activity detection
and channel estimation for an IRS-assisted ToT network.

Notations. R (C) denotes the set of real (complex) numbers.
Xi,j is the (i, j)-th entry of a matrixX , and the operation diag{x}
with x ∈ Cn returns a diagonal matrix X ∈ Cn×n where Xi,i =
xi. (·)>, ‖ · ‖∗,�, CN (0, 1) denote transpose operation, nuclear
norm, the Hadamard product and standard complex Gaussian distri-
bution.

2. SYSTEM MODEL

Consider an IRS-assisted IoT network in Fig 1, where the IRS con-
sists of N reflecting elements and the BS is equipped with M anten-
nas to serve K single-antenna mobile devices. Due to unfavorable
propagation conditions, the direct link between the BS and the de-
vices has negligible received signals and thus we ignore the device-
BS channel [1, 18, 19]. We define hrk ∈ CN×1 as the channel vector
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Fig. 1: IRS-assisted IoT network without device-BS channels

from the k-th device to the IRS. The channel matrix from the IRS to
the BS is denoted byG ∈ CM×N . We assume a block-fading chan-
nel model where the channel is quasi-static in each block of length T .
Furthermore, we consider Rayleigh fading and the path-loss fading
for all the channels, e.g., hrk ∼ CN (0, lkI) and G ∼ CN (0, lRI),
where lk and lR denote the path-loss components.

In this paper, we focus on sporadic communications [13, 25],
e.g., only a subset of all devices are active in each coherence block
with probability ρ and αk = 1 denotes the active state of the k-th
device, otherwise αk = 0. For the propose of IRS-related device ac-
tivity detection and channel estimation, the k-th device will transmit
a unique signature sequence xk = [xk(1), · · · ,xk(L)] ∈ C1×L

where L < T is the sequence length. Then, for all l = 1, · · · , L, the
uplink signal received by the BS can be written as

y(l) = G

(
p(l)�

K∑
k=1

hrkαkxk(l)

)
+ n(l), (1)

wheren(l) ∼ CN (0, σ2I) is the additive noise at time slot l, and the
variance σ2 depends on the background noise power normalized by
the device transmit power. p(l) =

[
βl,1e

φl,1 , · · · , βl,Neφl,N
]> ∈

CN×1 is defined as the phase-shifting vector of the IRS, where
βl,j ∈ {0, 1} and φl,j ∈ (0, 2π] are on/off state and the phase
shift of the j-th reflecting element on the IRS at the time slot l,
respectively.

LetH = [hr1, · · · ,hrK ] ∈ CN×K andX = [x>1 , · · · ,x>K ]> ∈
CK×L be the channel matrix of all device-IRS links and the known
signature matrix, respectively. Considering L time slots in each
coherence block, the received signals Y ∈ CM×L by the BS can be
expressed in matrix form as

Y = G (P � (HAX)) +N , (2)

where N = [n(1) · · · ,n(L)] ∈ CM×L is the additive Gaussian
noise,A = diag{α1, · · · , αK} ∈ RK×K andP = [p1(l), · · · ,pL(l)] ∈
CN×L denote the activity matrix and the phase-shifting matrix, re-
spectively.

This paper focuses on the regime where the number of devices is
much larger than the signature sequence length, i.e.,K � L. There-
fore, it is impossible to assign the mutually orthogonal signature se-
quences to all devices. Inspired by [16], the signature sequence of
the k-th device is generated from i.i.d complex Gaussian distribution
with zero mean and variance one, i.e., xk ∼ CN (0, IL).

3. PROBLEM FORMULATION

The goal of this paper is to jointly detect the activity matrix A and
estimate the IRS-related channel matricesG from the IRS to the BS
andH from the active devices to the IRS, given the received signals
Y , the phase-shifting matrixP and the known signature matrixX in
the regime where K � L. We call this problem as the IRS-related
activity detection and channel estimation problem. For simplicity,
we introduce the following variables

Θ = HA ∈ CN×K , (3)

Q = ΘX ∈ CN×L, (4)

W = P �Q ∈ CN×L. (5)

Since the activity matrix A is a sparse diagonal matrix, Θ has the
group sparsity on its column [26]. Then, the system model (2) can
be expressed as

Y = GW +N . (6)

From the definition (5), we can see that the matrix W has the same
sparsity pattern as the phase-shifting matrix P . Hence, by designing
the matrixP as a sparse matrix, we can recover the matrixG and the
matrixW from the observations Y via the techniques of sparse ma-
trix factorization [20, 21]. Specifically, we design the phase-shifting
matrix P as follows: the on/off state βl,j of the j-th reflect ele-
ment on the IRS at the time slot l are generated independently from
Bernoulli distribution with the probability λ of taking the value 1. In
addition, we generate the phase shifts φl,j according to the standard
uniform distribution within (0, 2π].

Due to the sparsity of the matrix W and (5), we have to re-
cover the missing entries of Q given the estimated matrix Ŵ and
the phase-shifting matrix P . Note that Q is low-rank due to the
group sparsity of Θ. Hence, this sub-problem can be formulated as
a matrix completion problem and solved by exploiting the low-rank
property ofQ.

Finally, recovering the Θ from the estimated matrix Q̂ and the
known signature matrixX turns out to be the Multiple Measurement
Vectors (MMV) problem in compressed sensing [22].

In summary, the original problem can be solved through the fol-
lowing three stages:

1. Sparse Matrix Factorization: Recovering the matrices G
andW from the observations Y ;

2. Matrix Completion: Completing the missing entries of Q
given the estimated matrix Ŵ and the phase-shifting matrix
P ;

3. Multiple Measurement Vectors: Estimating the matrix Θ
from the estimated matrix Q̂ and the known signature matrix
X .

Once obtaining the estimated matrix Θ̂, the activity matrix Â =
diag{α̂1, · · · , α̂K} can be recovered via the group sparsity of Θ as
follows

α̂k =

{
1, ‖θ̂k‖2 > ε

0, ‖θ̂k‖2 ≤ ε
1 ≤ k ≤ K, (7)

where ε is some small non-negative threshold and θ̂k is the k-th
column of the estimated matrix Θ̂. Thus, the estimated matrix Ĥ
can be estimated by setting its i-th column as ĥi = θ̂i where i ∈
{k|α̂k = 1} [25].



4. PROPOSED IRS-RELATED ACTIVITY DETECTION
AND CHANNEL ESTIMATION ALGORITHM

To solve IRS-related activity detection and channel estimation prob-
lem, we establish a three-stage framework based on the approximate
message passing (AMP) algorithm. As shown in Algorithm 1, the ar-
chitecture of overall algorithm consists of the BiG-AMP algorithm
[23] for sparse matrix factorization, the Singular Value Thresholding
(SVT) algorithm [24] for matrix completion and the Vector AMP al-
gorithm [16] for the MMV problem. We will explain the details of
the proposed algorithm in the following subsections.

Algorithm 1 Proposed Joint IRS-Related Activity Detection and
Channel Estimation Algorithm

• Stage 1. Sparse Matrix Factorization via BiG-AMP (4.1)
Input: The observations Y .
Output: The estimated matrices Ĝ and Ŵ .

• Stage 2. Matrix Completion via SVT (4.2)
Input: The estimated matrix Ŵ in Stage 1 and the phase-

shifting matrix P .
Output: The estimated matrix Q̂.

• Stage 3. Multiple Measurement Vector problem via Vec-
tor AMP (4.3)
Input: The estimated matrix Q̂ in Stage 2 and the known

signature matrixX .
Output: The estimated matrix Θ̂.

4.1. Sparse Matrix Factorization via BiG-AMP

First, we adopt an extension of the AMP algorithm, the BiG-AMP
algorithm [23] to solve the following generalized bilinear inference
problem: estimate matrices G = [gm,n] ∈ CM×N and W =
[wn,l] ∈ CN×L from the observations Y = [yml] ∈ CM×L accord-
ing to (6). The BiG-AMP algorithm solves the sparse matrix factor-
ization problem by modelingG andW as random matrices. Specif-
ically, we introduce the following maximum a posteriori (MAP) es-
timation problem:(

Ĝ, Ŵ
)

= arg max
G,W

p (G,W |Y )

= arg max
G,W

p (Y |Z) p (G) p (W ) , (8)

where Z = GW and we assume that the likelihood function is
known and separable, i.e.,

p(Y |Z) =
∏
m

∏
l

p (yml|zml) . (9)

Furthermore, we assume the entries of G obey the i.i.d Gaussian
prior and the entries of W obey the i.i.d zero-mean Bernoulli-
Gasussian prior [23]. Hence, the prior ofG andW can be modeled
as follows

p(G) =
∏
m

∏
n

CN (gm,n; 0, σg), (10)

p(W ) =
∏
n

∏
l

(1− λ)δ(wnl) + λCN (wnl; 0, σw), (11)

where λ denotes the sparsity level of W ; σg and σw are the vari-
ances of G and W , respectively. To achieve the estimation, the
BiG-AMP algorithm infersG andW from the above model so that
the corresponding estimated matrices Ĝ and Ŵ can be multiplied
to yield an estimate Ŷ = ĜŴ up to the permutation and phase
ambiguities. Details of the BiG-AMP can be found in [23].

4.2. Matrix Completion via SVT

After sparse matrix factorization and ambiguity elimination in sec-
tion 4.1, we obtain the estimates Ĝ and Ŵ . Due to the design of
the phase-shifting matrix P , we have to recover the missing entries
in Q = [qnl] ∈ CN×L from the estimated matrix Ŵ . According
to (5), W has the same sparsity pattern as P . By exploiting the
low-rank property of Q, we shall solve the following optimization
problem:

minimize
Q∈CN×L

‖Q‖∗ (12)

subject to PΩ(P �Q) = PΩ(Ŵ ) (13)

where Ω = {(i, j)|Pij 6= 0}. PΩ denotes an orthogonal projector
onto the subspace spanned by matrices with sampled entries in Ω,
namely, the (i, j)-th entry in PΩ(W ) is equal to Wi,j if (i, j) ∈ Ω
and zero otherwise. To solve such a matrix completion problem,
we apply the Singular Value Thresholding (SVT) algorithm [24].
Specifically, for a constant τ and a sequence {δk}k≥1, starting with
J0 = 0, the iterations of SVT proceed as{

Qk = Sτ
(
Jk−1

)
Jk = Jk−1 + δkPΩ

(
Ŵ − P �Qk

) , (14)

where Sτ
(
Jk−1

)
is a soft-thresholding operator at level τ to the

singular values of the input matrix, which is defined as Sτ (J) =
U diag ({(σi − τ)+})V ∗ and (·)+ is the positive part of the input,
e.g., (t)+ = max(0, t).

4.3. MMV problem via Vector AMP

As for the MMV problem of recovering Θ̂ from the estimated matrix
Q̂ and the known signature matrix X , we adopt the Vector AMP
algorithm proposed in [27], which operates a vector denoiser on each
column vector of the matching filter output. initializing with Θ̂0 = 0
andR0 = Q, the iterations of the vector AMP algorithm are defined
as

θ̂tk =
(

(Rt)∗X + Θ̂t
)
k
,

θ̂t+1
k = ηt,k(θ̂tk),

Rt+1 = Q−XΘ̂t+1 +
K

L
Rt

K∑
k=1

η′t,k(θ̂tk)

K
,

(15)

where θ̂tk is the k-th column vector of the estimated matrix Θ̂t at
iteration t, Rt ∈ CN×L is the corresponding residual, ηt,k(·) :
CN×1 → CN×1 is a vector denoiser that operates on the k-th col-
umn vector of (Rt)∗X+Θ̂t, and η′t,k(·) is the first-order derivative
of ηt,k(·). Here, we apply the MMSE denoiser derived in [17], and
this denoiser has the following form:

ηt,k(θ̂t) = φt,k
lk

lk + τ2
t

θ̂t,
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Fig. 2: Simulation results

where

φt,k =
1

1 + 1−ρ
ρ

exp
(
−N

2
(πt,k − ψt,k)

) ,
πt,k =

(
1

τ2
t

− 1

τ2
t + lk

)
(θ̂t)H θ̂t

N
,

ψt,k = log

(
1 +

lk
τ2
t

)
,

τt+1 = σ2 +
K

L
ρEl

[
lτ2
t

l + τ2
t

]
,

with τ0 = σ2 + K
L
ρEl[l] and l denoting path-loss component.

5. SIMULATION

We carry out numerical experiments to evaluate the performance of
the proposed algorithm for massive device connectivity with em-
ployment of IRS, where the direct path is ignored due to unfavorable
propagation conditions [1, 18, 19].

For all the considered channels, we assume Rayleigh fad-
ing and the path loss [6, 17]. The path loss model is given by
l(d) = l0( d

d0
)−α where l0 is the path loss at the reference dis-

tance d0. In our setting, d0 = 1, l0 = −30dB, and the path loss
component α for device-to-IRS link and IRS-to-BS link are set as
2 and 2.8, respectively [6, 9]. The k-th device-to-IRS distance dk
is randomly generated from 500m to 1000m and the IRS-to-BS
distance dR is 100m. We suppose the noise power normalized by
the device transmit power, and thus the signal-to-noise ratio (SNR)
is defined as 10 log10( 1

σ
) where σ2 is the variance of the noise. We

resolved the permutation and phase ambiguities based on the true
values of G and W . For all the simulations: the signature matrix
X is generated from CN (0, I), and we set N = 15 IRS elements,
M = 30 antennas at the BS and K = 200 devices amongwhich
each device is active with probability ρ = 0.05, and the sparsity λ
of the phase-shifting matrix P is fixed at 0.5.

The performance of recovering the IRS-related channels is eval-
uated in terms of normalized mean-square-error (NMSE). To bench-
mark the estimation of the IRS-related channel G, we compare the
proposed algorithm with other two algorithms of sparse matrix fac-
torization, K-SVD [28] and SPAMS [29]. In Fig.2(a), we show that
the proposed algorithm significantly outperforms other two baseline
algorithms, which demonstrates the effectiveness of our algorithm.

We illustrate the activity recovery error rate versus the SNR for

different values of the signature sequence length L. We can see that
the larger L, the faster the error rate can be driven to zero as the
SNR increases. As shown in Fig. 2(b), we can not recover any
active device without the IRS under unfavorable propagation con-
ditions, however, this issue can be resolved by deploying an IRS
in IoT networks. Furthermore, we consider the noiseless case and
study the empirical success probability of recovering the IRS-related
channel H versus L. We declare successful recovery if the NMSE
of H < −50dB and record the success probability from 50 trials.
The sharp phase transition result in Fig. 2(c) are thus able to guide
the selection of the signature sequence length.

6. CONCLUSION

In this work, we considered the device activity detection and channel
estimation problem for the IRS-assisted IoT network. We establish a
three-stage framework including the BiG-AMP algorithm for sparse
matrix factorization, the Singular Value Thresholding algorithm for
matrix completion and the Vector AMP algorithm for the multiple
measurement vector problem. To the end, we provided the simula-
tion results to verify the effectiveness of the proposed algorithm.
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