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Abstract

The evolution of MobileNets has laid a solid foundation for
neural network applications on mobile end. With the latest
MobileNetV3, neural architecture search again claimed its
supremacy in network design. Unfortunately, till today all
mobile methods mainly focus on CPU latencies instead of
GPU, the latter, however, is much preferred in practice for it
has faster speed, lower overhead and less interference. Bear-
ing the target hardware in mind, we propose the first Mobile
GPU-Aware (MoGA) neural architecture search in order to be
precisely tailored for real-world applications. Further, the ul-
timate objective to devise a mobile network lies in achieving
better performance by maximizing the utilization of bounded
resources. Urging higher capability while restraining time
consumption is not reconcilable. We alleviate the tension by
weighted evolution techniques. Moreover, we encourage in-
creasing the number of parameters for higher representational
power. With 200× fewer GPU days than MnasNet, we ob-
tain a series of models that outperform MobileNetV3 under
the similar latency constraints, i.e., MoGA-A achieves 75.9%
top-1 accuracy on ImageNet, MoGA-B meets 75.5% which
costs only 0.5 ms more on mobile GPU. MoGA-C best at-
tests GPU-awareness by reaching 75.3% and being slower on
CPU but faster on GPU. The models and test code are made
publicly here 12.

1 Introduction
The MobileNets trilogy has opened a gate to on-device ar-
tificial intelligence for the mobile vision world (Howard et
al. 2017; Sandler et al. 2018; Howard et al. 2019). In the
meantime, neural architecture search becomes the new en-
gine to empower the future architecture innovation (Zoph
et al. 2018; Tan et al. 2019; Cai, Zhu, and Han 2019;
Chu et al. 2019a). The guideline in designing mobile ar-
chitecture is that not only should the high performance be
concerned, but also we must strive for low latency in favor
of rapid responsiveness and improved power efficiency to
prolong battery life.

In this paper, we aim to bring forward the frontier of mo-
bile neural architecture design by stretching out the repre-

1https://github.com/xiaomi-automl/MoGA
2This is a preview version, subject to frequent changes.
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Figure 1: Latency pie chart of MoGA-A/B/C, MobileNetV3
operations when run on mobile CPUs (inner circle with
TFLite) vs. on mobile GPUs (outer circle with MACE).

sentational space within the desired latency range. Our work
can be summarized in following aspects.

First, we make a shift in the search trend from mo-
bile CPUs to mobile GPUs, with which we can gauge the
speed of a model more accurately and provide a production-
ready solution. On this account, our overall search approach
is named Mobile GPU-Aware neural architecture search
(MoGA). Our results suggest that generated models show
different behavior related to the targeted hardware as shown
in Figure 1.

Second, we replace traditional multi-objective optimiza-
tion with a weighted fitness strategy. While considering ac-
curacy, latency and the number of parameters as our objec-
tives, particular care is required to abate these three contend-
ing forces. One important insight is that the number of pa-
rameters should be made reasonably large instead of as few
as possible, this leverages performance but doesn’t necessar-
ily increase latency. At the mobile scale, this would be the
proper choice as we try to avoid underfitting instead of over-
fitting. On top of that, we lay more attention on accuracy and
latency than the number of parameters.

Third, as per search cost, we benefit from one-shot su-
pernet training and an accurate latency look-up table. Actu-
ally, it only requires the same expense as training a stand-
alone model. The overall pipeline costs 12 GPU days,
about 200× less than MnasNet (Tan et al. 2019). More im-
portantly, to cater for various mobile devices, as we de-
couple search process from training, it only requires one
more inexpensive search with a renewed latency table. In

ar
X

iv
:1

90
8.

01
31

4v
4 

 [
cs

.L
G

] 
 3

 M
ar

 2
02

0

https://github.com/xiaomi-automl/MoGA


contrast, gradient descent and reinforced methods have to
start all over for supernet training or incomplete training
for multitudinous models (Liu, Simonyan, and Yang 2019;
Tan et al. 2019).

Finally, we present our searched architectures that outper-
form MobileNetV3. MoGA-A that achieves 75.9% top-1 ac-
curacy on ImageNet, MoGA-B 75.5% and MoGA-C 75.3%.
MoGA-C is best comparable to MobileNetV3, with simi-
lar FLOPs and an equal number of parameters, which runs
slower on mobile CPUs but faster on mobile GPUs.

2 Related Works
During the era of human craftsmanship, MobileNetV1 and
V2 (Howard et al. 2017; Sandler et al. 2018) have widely
disseminated depthwise separable convolutions and inverted
residuals with linear bottlenecks. Moreover, Squeeze and ex-
citation blocks are later introduced in (Hu, Shen, and Sun
2018) to enrich residual modules from ResNet (He et al.
2016).

In their aftermath, a series of automated architectures are
searched based on these building blocks (Tan et al. 2019;
Cai, Zhu, and Han 2019; Chu et al. 2019a; Howard et al.
2019). For instance, MnasNet frames a factorized hierarchi-
cal search space with MobileNetV2’s inverted bottleneck
convolution blocks (MB) of variable kernel sizes and ex-
pansion rates. Its latest variation also includes an option of
squeeze and excitation module (SE) (Tan et al. 2019). Prox-
ylessNAS and FairNAS adopt a similar design (Cai, Zhu,
and Han 2019; Chu et al. 2019a) without SE modules, while
MobileNetV3 achieves a new state of the art by integrat-
ing SE within MnasNet search space, along with numer-
ous techniques like Platform-Aware NAS (Tan et al. 2019),
NetAdapt (Yang et al. 2018) and improved non-linearities
(Howard et al. 2019).

As for search methods, recent attention has been drawn
to the one-shot approaches initiated by (Bender et al.
2018), as they tremendously reduce computing resources
and also offer state of the art results (Cai, Zhu, and Han
2019; Stamoulis et al. 2019; Guo et al. 2019; Chu et
al. 2019a). Briefly, a one-shot approach embodies weight-
sharing across models by constructing a supernet where
each step of training accounts for the final performance.
Its single-path variations further cut down memory con-
sumption by training a picked path at each step instead
of the whole supernet, yielding more flexibility for archi-
tecture design (Stamoulis et al. 2019; Guo et al. 2019;
Chu et al. 2019a). Among them, FairNAS proved it is criti-
cal to maintaining strict fairness for training single-path nets
so to reach a steady rank, which can reasonably facilitate the
search process (Chu et al. 2019a).

3 Mobile GPU-Aware NAS Based on
Multi-Objective Optimization

In this section, to better formulate our design problem, we
draw insights from the development of MobileNets and ex-
periments on the mobile GPU/CPU relationship, as well as
reviewing previous optimization approaches.

3.1 Mobile GPU Awareness
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Figure 2: Latency relationship on mobile CPUs vs. on mo-
bile GPUs.

Recent NAS approaches have an increased emphasis on
target platforms, primarily on mobile CPUs (Tan et al. 2019;
Dong et al. 2018; Wu et al. 2019; Cai, Zhu, and Han 2019;
Stamoulis et al. 2019; Howard et al. 2019). MnasNet has
developed a reward ACC× (LAT/TAR)w, which requires
delicate manual tuning for a parameter w to balance between
latency and accuracy (Tan et al. 2019), in MobileNetV3, w
is reduced from −0.07 to −0.15 (Howard et al. 2019) to
compensate for accuracy drop.

In practice, mobile neural networks are mostly deployed
to run on GPUs, DSPs and recently also on specific Neural
Processing Units (NPUs), while CPUs would be the last to
choose. To further investigate the relationship of CPU laten-
cies versus GPU ones, we measure 100 random models on
both two platforms. The result is shown in Figure 2. We see
that there is no obvious linear correspondence. Hence, To
develop architectures with target hardware in mind is more
than necessary. For this reason, we are driven to apply Mo-
bile GPU awareness to the latest neural architecture search
approaches.

3.2 Underfitting and Overfitting
As we try to tear apart two contradicting objectives, there
isn’t too much freedom left to increase accuracy with a con-
strained latency. Fortunately, we observe from the evolution
of MobileNets as in Figure 3, the number of parameters has
grown while the latencies and multiply-adds are kept low.
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Figure 3: The evolution of MobileNets.

Moreover, for the mobile end, models tend to be underfit-
ted instead of overfitted since they carry fewer numbers of



parameters (Zhang et al. 2018), which means we are free to
encourage representational power by enlarging its range of
parameters. This intuition greatly expands our design space.

3.3 Problem Formulation
Most hardware-aware methods build the classification prob-
lem as follows,

max Accuracy(m)

s.t. Latency(m) < L

modelm ∈ Ω.

(1)

where Ω is the whole search space and L is a given maxi-
mal acceptable latency3. Informally speaking, larger models
have greater capacity and to achieve better accuracy. There-
fore, NAS methods will prefer models which have large run-
ning time. As a result, when the requirement of L changes,
the whole NAS pipeline must start over.

To address the above problem, a recent popular approach
formulate it as multi-objective problem (MOP) whose solu-
tion is called Pareto Front,

max {Accuracy(m),−Latency(m)}
m ∈ Ω.

(2)

One popular approach for Equation 2 is converting it
into a customized objective of weighted product ACC ×
(LAT/TAR)w, which requires delicate manual tuning for a
parameter w to balance between latency and accuracy (Tan
et al. 2019).

Upon these previous attempts, as inspired by Section 3.2,
we maximize the number of parameters in addition to the
two objectives in Equation 2. More formally, we try to solve
the following problem,

max {Accuracy(m),−Latency(m), Params(m)}
m ∈ Ω.

(3)

As a matter of fact, these three objectives are not of equal
importance in most cases. A typical case is like Equation 2.
Therefore, we need to introduce some strategies to address
the issue. Let wacc, wlat, wparams denote customized pref-
erence for those objectives. Without loss of generality, the
problem can be defined as,

min {−Accuracy(m), Latency(m),−Params(m)}
s.t. m ∈ Ω

wacc + wlat + wparams = 1

wacc, wlat, wparams >= 0.
(4)

There are two basic subproblems to be solved in the next
section. One is to instantly evaluate accuracy and latency of
a model, the other is to solve Equation 4. We use NSGA-II,

3The following latency means mobile GPU latency.

Index Expansion Kernel Size SE

0 3 3 -
1 3 3 3
2 3 5 -
3 3 5 3
4 3 7 -
5 3 7 3
6 6 3 -
7 6 3 3
8 6 5 -
9 6 5 3
10 6 7 -
11 6 7 3

Table 1: Each layer in our search space has 12 choices. SE:
Squeeze-and-Excitation.

which is one of the most powerful and widely used algo-
rithms to solve such problems (Deb et al. 2002). First, it’s
efficient to solve MOPs, especially when the number of ob-
jectives is large, some variants can still work. Second, it’s
flexible to apply customized preferences for different objec-
tives, as well as various constraints. We also benefit from its
implicit objective scaling and normalization.

4 Solving it Using Weighted NSGA-II
4.1 Search Space
Our search space is built layer by layer on inverted bottle-
neck blocks as (Cai, Zhu, and Han 2019; Chu et al. 2019a).
We keep the same number of layers and activation functions
as MobilenetV3-large. For each layer, we search from three
dimensions (see Table 1):

• the convolution kernel size (3, 5, 7)

• the expansion ratio for the inverted bottleneck block (3, 6)

• whether the squeezing and excitation mechanism is en-
abled or not.

Therefore, the total search space has a volume of 1214,
which needs efficient methods to differentiate better models
from worse. To be simple, we search for the expansion rate
instead of channels which is used by (Howard et al. 2019)
based on NetAdapt (Yang et al. 2018). Besides, we utilize
choice index to directly encode each model chromosome.
More formally, a model chromosome m can be written as
m1 = (x1

1, x
1
2, ..., x

1
14).

4.2 Accuracy and Latency Prediction
The evaluation of model accuracy must be made immediate
for searching efficiency. We take advantage of a variation
of one-shot approaches FairNAS for fast evaluation with a
stable ranking. Unlike their version, based on our previously
defined search space, we construct a supernet with 12 choice
blocks per layer. Then we train our supernet on the ImageNet
dataset with the same fairness strategy.

As for mobile GPU latency, we don’t acquire real-time la-
tency during the pipeline from a cell phone for two reasons.
One is that while the performance can be rapidly predicted



by the supernet which takes less than 1 minute, it will eas-
ily become the bottleneck when we use a mobile device to
evaluate latency on the fly. The other is that latency mea-
surement may become inaccurate as a result of overheating
after long-time insistent testing.

Instead, since each choice block in our search space has
a fixed input, we can efficiently approximate the latency for
any sampled model. To do so, we benchmark the latency
of each choice block under a given input and construct a
layerwise lookup table. We can then accurately calculate the
latency simply by accumulating time cost across all layers.
We find that predicted GPU latency coincides with ground-
truth values with a negligible RMSE, see Figure 4.
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Figure 4: Mobile GPU latency measured vs. predicted ones.
The latency RMSE is 0.0571ms.

4.3 Weighted NSGA-II
We comply with the standard NSGA-II procedure, and only
state the difference if necessary.

Population Initialization We initialize population to in-
troduce various choice blocks to encourage exploration.

Crossover We take a single-point crossover. Specifically,
for two models m1 = (x1

1, x
1
2, ..., x

1
14) and m2 =

(x2
1, x

2
2, ..., x

2
14), if the point position is k, the result after

crossover is (x1
1, x

1
2, ...x

2
k..., x

1
14).

Mutation We use hierarchical mutation and the same hy-
perparameters as FairNAS (Chu et al. 2019a).

Non-dominated Sorting For a minimization problem
with n objectives, we state that A dominates B means for
any objective Oi, Oi

A ≤ Oi
B . For a given population P , A is

not dominated if and only if A is not dominated by any other
individuals.

The crowding distance is a key component to achieve
better trade-off among various objectives. We use the cus-
tomized weights to define the crowding distance for non-
boundary individuals,

D(mj) =

n∑
i=1

wi ∗
Oi

neighbor+ −Oi
neighbor−

Oi
max −Oi

min

. (5)

Note Oi
neighbour− and Oi

neighbor+ are the i-th objective
value of the left and the right neighbor of model mj re-
spectively, while Oi

max and Oi
min are the maximum and

the minimum for the i-th objective in the current popula-
tion. In Equation 5, customized preference can be flexibly

Algorithm 1 The weighted NAS pipeline.
Input: Supernet S, search space Ω, the number of genera-
tions N , population size n, validation dataset D, objective
weights w
Output: A set of K individuals on the Pareto front.
Train supernet S by the FairNAS approach on Ω.
Make gpu latency table T as section 4.2.
Uniformly generate the populations P0 and Q0 until each
has n individuals.
for i = 0 to N − 1 do
Ri = Pi ∪Qi

F = non-dominated-sorting(Ri)
Pick n individuals to form Pi+1 by ranks and the
crowding distance weighted by w based on Equation 5.

Qi+1 = ∅
while size(Qi+1) < n do
M = tournament-selection(Pi+1)
qi+1 = crossover(M) ∪ hierarchical-mutation(M)
Obtain fitness value across all objectives

Evaluate model qi+1’s accuracy with S on D
Regress model qi+1’s latency based on T

Qi+1 = Qi+1 ∪ {qi+1}
end while

end for
Select K models at an equal distance near Pareto front
from PN

incorporated. If wacc = wlat = wparams = 1
3 , it degrades

as the standard NSGA-II. In our experiment, wacc = wlat =
0.4, wparams = 0.2, whose requirement is from a practical
application.

4.4 Our NAS Pipeline
Our search pipeline is an evolution process, drawn in Fig-
ure 5 and detailed in Algorithm 1. Specifically, we use a
trained supernet as a fast evaluator, a GPU latency lookup
table, and a statistic tool to compute the number of parame-
ters. The initial random population propagates at significant
speed. The pipeline evolves 120 generations with a popula-
tion size 70, and it only takes about 1.5 GPU days to evalu-
ate these 8400 models. We use the same hyperparameters as
FairNAS.

Random Population

Weighted NSGA-II

GPU Look-up Table

Supernet Evaluator

Statistic ToolPareto-optimal Front

Figure 5: The overall pipeline of MoGA.

5 Experiments
5.1 Mobile GPU Latency
In practice, we employ SNPE (Qualcomm 2019) and Mo-
bile AI Compute Engine (MACE) for mobile GPU bench-



Input Ops t c SE NL s

2242 × 3 conv2d, 3× 3 - 16 - HS 2
1122 × 16 bneck, 3× 3 1 16 - RE 1
1122 × 16 bneck, 5× 5 6 24 - RE 2
562 × 24 bneck, 7× 7 6 24 - RE 1
562 × 24 bneck, 3× 3 6 40 - RE 2
282 × 40 bneck, 3× 3 6 40 3 RE 1
282 × 40 bneck, 3× 3 3 40 3 RE 1
282 × 40 bneck, 3× 3 6 80 3 HS 2
142 × 80 bneck, 3× 3 6 80 - HS 1
142 × 80 bneck, 7× 7 6 80 - HS 1
142 × 80 bneck, 7× 7 3 80 3 HS 1
142 × 80 bneck, 7× 7 6 112 - HS 1
142 × 112 bneck, 3× 3 6 112 - HS 1
142 × 112 bneck, 3× 3 6 160 - HS 2
72 × 160 bneck, 5× 5 6 160 3 HS 1
72 × 160 bneck, 5× 5 6 160 3 HS 1
72 × 160 conv2d, 1× 1 - 960 - HS 1
72 × 960 avgpool, 7× 7 - - - HS -
12 × 960 conv2d, 1× 1 - 1280 - HS 1
12 × 1280 conv2d, 1× 1 - k - - -

Table 2: The architecture of MoGA-A. Note t, c, s refer to
expansion rate, output channel size and stride respectively.
SE for squeeze-and-excitation, NL for non-linearity. k for
the number of categories.

marking (Xiaomi 2018). We randomly sample some mod-
els and report the differences between our predictions and
on-device measurements, which are shown in Figure 4. For
instant latency prediction, we construct a latency lookup ta-
ble based on MACE measurements on all 12 choices blocks
for each cell (12× 14). For the final comparison with state-
of-the-art models, we also report mobile GPU latencies with
SNPE (Qualcomm 2019), and CPU latencies with Tensor-
flow Lite (Abadi et al. 2015). Considering recent updates on
Tensorflow speed up the inference time, we choose a version
that can reproduce the result on MobileNetV2 (Sandler et al.
2018).

Unless otherwise noted, mobile CPU latencies are mea-
sured on a Google Pixel 1 using a single large core of CPU
with a batch size of 1. Mobile GPU latencies are bench-
marked on a Mi MIX 3. The input size is set to 224×224.

5.2 Training
Training of our Supernet We search proxylessly on the
ImageNet (Deng et al. 2009) classification dataset. We take
out 50k images from the training set to form our validation
set and use the official validation set as our test set to evalu-
ate our models, which is on par with other methods. In par-
ticular, we train the supernet by SGD with momentum 0.9
for 32 epochs. The initial learning rate is 0.05 and is sched-
uled to arrive at zero within a single cosine cycle.

Training for Stand-Alone models To alleviate the train-
ing unfairness, we utilize the same training tricks and hy-
perparameters as MobileNetV3 (Howard et al. 2019).6. By
doing so, we singled out various training tricks in order to

focus on the authentic model performance. In particular, We
use a batch size of 4096 and RMSProp optimizer with 0.9
momentum. The initial learning rate is 0.1 and linear warm-
up (Goyal et al. 2017) is applied for the first 5 epochs. We
use a dropout rate of 0.2 before the last layer (Srivastava et
al. 2014) and L2 weight decay 1e−5. Besides, we make use
of NVIDIA’s mixed precision library Apex to enable larger
batch size4. All our experiments are performed on two Tesla-
V100 machines.

5.3 Comparisons with State-of-the-art Methods
We are mostly comparable to the latest version of MnasNet
(Tan et al. 2019) and MobileNetV3 (Howard et al. 2019),
as we share the similar search space. Also, we use the same
training and data processing tricks as in (Tan et al. 2019)
for complete training of stand-alone models. Note that with
latency considered as one of the objectives, our generated
models pay more attention to increase the number of param-
eters in order to gain higher performance, see detailed com-
parison results in Table 3. We list all layers of MoGA-A in
Table 2, and illustrate the whole MoGA family in Figure 8.

For a fair comparison, here we only consider sin-
gle path models based on inverted bottleneck blocks.
MoGA-A achieves a new state-of-the-art top-1 accuracy
75.9%, surpassing Proxyless-R Mobile (+1.3%), MnasNet-
A1 (+0.7%), MnasNet-A2 (+0.3%) with fewer FLOPs.
MoGA-B obtains 75.5%, excelling MobileNetV3 at simi-
lar GPU speed. MoGA-C hits a higher accuracy with faster
GPU speed, note it is slower on CPU, which otherwise will
be treated as inferior by CPU-aware methods. Therefore, it’s
beneficial to fit models for specific hardware, indicating that
even latency on other computing units and FLOPs are not
ideal proxies.

MoGA-A makes extensive use of large kernels (4 layers
with 7 × 7), which helps to enlarge receptive fields. More-
over, it mostly places large kernels on the stages with 14×14
input to reduce the latency cost. It also utilizes a large ex-
pansion rate after each downsampling stage to retain and to
extract more useful features.

Interestingly for MoGA-B, the expansion rates across var-
ious layers mimic a sine curve. Like MoGA-A, it utilizes five
7 × 7 kernels to obtain a large receptive field. To cut down
the latency cost, it places most of them in the 14× 14 stage.
Like FairNAS-A, it selects larger expansion rates right be-
fore downsampling operations.

Coincidentally, both MoGA-C and MobileNetV3-large
simply contain 3× 3 and 5× 5 kernels only, even with same
amount of such layers. While MobileNetV3-large prefers
5 × 5 operations in the tail of the model, MoGA-C chooses
3× 3 instead. Besides, MoGA-C places 5× 5 kernels in the
middle and uses less squeeze-and-excitation operations. In
such way, it better balances accuracy and latency cost.

5.4 Mobile GPU Awareness Analysis
We benchmark the inference cost for our three models both
on mobile CPUs and GPUs. The result is shown in Figure 1.
As for mobile GPUs, all models spend most of the time on

4https://github.com/NVIDIA/apex.git



Methods Mult-Adds Params LatSNPE
g LatMACE

g Latc Top-1 Top-5
(M) (M) (ms) (ms) (ms) (%) (%)

MobileNetV2 1.0 (Sandler et al. 2018) 300 3.4 6.9† 7.0† 78 72.0 91.0
MobileNetV3 Large 1.0 (Howard et al. 2019) 219 5.4 10.8? 9.5? 70 (66)? 75.0 (75.2)? 92.2

MnasNet -A1 (Tan et al. 2019) 312 3.9 - - 78 75.2 92.5
MnasNet-A2 (Tan et al. 2019) 340 4.8 - - 84 75.6 92.7
FBNet-B (Wu et al. 2019) 295 4.5 - - 23 ‡ 74.1 -
Proxyless-R Mobile (Cai, Zhu, and Han 2019) 320† 4.0 7.3† 7.9† 87 (78)† 74.6 92.2
Proxyless GPU (Cai, Zhu, and Han 2019) 465† 7.1 9.6† 9.8† 126 (124)† 75.1 -
Single-Path NAS (Stamoulis et al. 2019) 365 4.3 - - 79 75.0 92.2
Once for All (Cai, Gan, and Han 2019) 327 - - - 112 ∗ 75.3 -
FairNAS-A (Chu et al. 2019a) 388 4.6 9.8† 9.7† 104 75.3 92.4
MoGA-A (Ours) 304 5.1 11.8 11.1 101 75.9 92.8
MoGA-B (Ours) 248 5.5 10.3 10.0 81 75.5 92.6
MoGA-C (Ours) 221 5.4 9.6 8.8 71 75.3 92.5

Table 3: Comparison of mobile models on ImageNet. ?: Our reimplementation. Numbers within the parentheses are reported
by its authors, same for below. †: Based on its published code. ‡: Samsung Galaxy S8. ∗: Samsung Note8.

2D convolutions. MoGA-A and B spend the second most
of the time on depthwise convolutions because they make
extensive use of large kernels and expansion rates, whereas
MoGA-C pays more attention to elementwise operations in-
stead. Note all MoGA series invest more time on depthwise
convolutions, contributing for faster speed and better perfor-
mance.

It is worth noticing that how models exhibit a differ-
ent behavior on mobile GPUs than on CPUs. For instance,
vanilla convolutions and depthwise convolutions generally
share bigger percentages on CPUs than on GPUs, while ele-
mentwise operations have a smaller percentage, as seen from
Figure 1. Additionally, there is a discrepancy when running
the same model with the different inference frameworks as
well, which could call for a framework-aware solution, see
Table 3. Apart from the mobile framework we use, CPUs
and GPUs differ on inherent microarchitectures, which puts
hardware-specific requirements a must for the design of neu-
ral architectures.

5.5 GPU Cost Analysis with More Mobile Devices
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Figure 6: Overall search cost vs. the number of target plat-
forms.

Given a target device, our overall search cost call can
be decomposed into two parts: csuper for supernet train-
ing (10.5 GPU days) and csearch for the NSGA-II pipeline.
The latter estimates model accuracy by the supernet evalua-

tor. Notably, there is no need to retrain the supernet when
we design neural models for different mobile platforms.
In contrast, the cost for most existing NAS methods, such
as RL, EA and gradient descent, increases linearly with
the number of platforms (Tan et al. 2019; Wu et al. 2019;
Cai, Zhu, and Han 2019; Liu, Simonyan, and Yang 2019).
For N platforms, our csuper is amortized as csuper

N . When
N ≥ 22, the overall cost call reduces to less than 2 GPU
days per platform. This benefit is better depicted in Figure 6.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Validation Top-1 Accuracy

7.5

10.0

12.5

15.0

L
at

en
cy

(m
s)

Hierarchical Mutator+Weighted NSGA2

Random Mutator+Weighted NSGA2

NSGA2 with 2 objectives

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

Validation Top-1 Accuracy

4

5

6

P
ar

a
m

s

×106

Hierarchical Mutator+Weighted NSGA2

Random Mutator+Weighted NSGA2

NSGA2 with 2 objectives

Figure 7: Pareto Front of weighted NSGA-II with hierarchi-
cal mutator compared with that of a random mutator and of
two objectives (accuracy, latency).

6 Results
6.1 Ablation Study
Model Selection For the chosen weighted NSGA-II
equipped with hierarchical mutation (Chu et al. 2019b), we



C
on

v
K

3

3*
22

4*
22

4

M
B

E
1

K
3

16
*1

12
*1

12

M
B

E
6

K
5

16
*1

12
*1

12

M
B

E
6

K
7

24
*5

6*
56

M
B

E
6

K
3

SE

24
*5

6*
56

M
B

E
6

K
3

SE

40
*2

8*
28

M
B

E
3

K
3

SE

40
*2

8*
28

M
B

E
6

K
3

40
*2

8*
28

M
B

E
6

K
3

80
*1

4*
14

M
B

E
6

K
7

80
*1

4*
14

M
B

E
3

K
7

SE

80
*1

4*
14

M
B

E
6

K
7

80
*1

4*
14

M
B

E
6

K
3

11
2*

14
*1

4

M
B

E
6

K
3

11
2*

14
*1

4

M
B

E
6

K
5

SE

16
0*

7*
7

M
B

E
6

K
5

SE

16
0*

7*
7

C
on

v
K

1

16
0*

7*
7

G
lo

ba
lP

oo
lin

g
+

FC
*2

96
0*

7*
7

(a) MoGA-A
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(c) MoGA-C

Figure 8: The Architectures of MoGA-A, B, C. Note Ex Ky SE means an expansion rate of x for its expansion layer and a
kernel size of y for its depthwise convolution layer, SE for squeeze-and-excitation. Grey thick lines refer to downsampling
points. Dashed lines separate the stem and end layers from the backbone.

compare it with the random mutation baseline, see in Fig-
ure 7. Plenty of models from the baseline are dominated by
the hierarchical version, which attests that hierarchical mu-
tation improves searching.

We compare the best elitists for Equation 2 and 4, which is
shown in the upper part of Figure 7. The Pareto front formed
by the two objectives is largely surrounded by those with
three.

While FairNAS states that a fair training can boost the
rank relationship between the supernet predictor and stand-
alone training, it also points out that it can be affected by ini-
tialization techniques and suboptimal training hyperparam-
eters. For the latter, we empirically maximize the number of
parameters as a compensation bonus.
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Figure 9: Histogram on numbers of parameters of models
from the last generation of weighted NSGA-II with hierar-
chical mutator, compared with that of two objectives (accu-
racy, latency).

Does it matter to use parameters as an objective? Oc-
cam’s Razor doesn’t fit in this case, because in such mobile
setting, a neural network is prone to underfitting instead of
overfitting. If we consider minimizing the number of param-
eters, NSGA-II is then at the risk of excluding models with
more parameters generation by generation. For evidence, we
show the histograms of the number of parameters for the fi-
nal elitists in Figure 9.

7 Conclusion
To sum up, we have discussed several critical issues in
mobile neural architecture design. First, we promote the
first Mobile GPU-Aware (MoGA) solution, as in produc-
tion, running networks on mobile GPUs are much preferred.
Second, we adopt weighted fitness strategy to comfort more
valuable objectives like accuracy and latency, other than the
number of parameters. Third, our total search cost has been
substantially reduced to 12 GPU days. Also, the trained su-
pernet is once-for-all since the same supernet caters for all
mobile contexts. It requires o(1) search cost when apply-
ing to a new mobile device. Last, we employ an automated
search approach in the search space adapted from MnasNet
and MobileNetV3, which generates a new set of state-of-the-
art architectures for mobile settings. In particular, MoGA-
C hits 75.3% top-1 ImageNet accuracy, which outperforms
MobileNetV3 with competing mobile GPU latency at simi-
lar FLOPs and an equal number of parameters.

In the future, there will still be continuous interest to
squeeze out better performance within limited hardware



bounds, especially on targeted computing units. Also, bal-
ancing between architecture diversity and search space size
will remain as a major topic, it also poses a challenge for
searching algorithms when search space grows enormously.
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S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner,
B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Va-
sudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg,
M.; Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems.
tag: v1.14.0-rc0. Software available from tensorflow.org.

[Bender et al. 2018] Bender, G.; Kindermans, P.-J.; Zoph, B.;
Vasudevan, V.; and Le, Q. 2018. Understanding and Simpli-
fying One-Shot Architecture Search. In International Con-
ference on Machine Learning, 549–558.

[Cai, Gan, and Han 2019] Cai, H.; Gan, C.; and Han, S.
2019. Once for All: Train One Network and Specialize it for
Efficient Deployment. arXiv preprint. arXiv:1908.09791.

[Cai, Zhu, and Han 2019] Cai, H.; Zhu, L.; and Han, S.
2019. ProxylessNAS: Direct Neural Architecture Search on
Target Task and Hardware. In International Conference on
Learning Representations.

[Chu et al. 2019a] Chu, X.; Zhang, B.; Xu, R.; and Li,
J. 2019a. FairNAS: Rethinking Evaluation Fairness of
Weight Sharing Neural Architecture Search. arXiv preprint.
arXiv:1907.01845.

[Chu et al. 2019b] Chu, X.; Zhang, B.; Xu, R.; and Ma,
H. 2019b. Multi-Objective Reinforced Evolution in
Mobile Neural Architecture Search. arXiv preprint.
arXiv:1901.01074.

[Deb et al. 2002] Deb, K.; Pratap, A.; Agarwal, S.; and Me-
yarivan, T. 2002. A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2):182–197.

[Deng et al. 2009] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.;
Li, K.; and Fei-Fei, L. 2009. ImageNet: A Large-Scale Hier-
archical Image Database. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 248–
255. IEEE.

[Dong et al. 2018] Dong, J.-D.; Cheng, A.-C.; Juan, D.-C.;
Wei, W.; and Sun, M. 2018. DPP-Net: Device-aware Pro-
gressive Search for Pareto-optimal Neural Architectures. In
Proceedings of the European Conference on Computer Vi-
sion, 517–531.

[Goyal et al. 2017] Goyal, P.; Dollár, P.; Girshick, R.; Noord-
huis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and
He, K. 2017. Accurate, Large Minibatch SGD: Training Im-
ageNet in 1 Hour. arXiv preprint. arXiv:1706.02677.

[Guo et al. 2019] Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu,
Z.; Wei, Y.; and Sun, J. 2019. Single Path One-Shot Neural

Architecture Search with Uniform Sampling. arXiv preprint.
arXiv:1904.00420.

[He et al. 2016] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016.
Deep Residual Learning for Image Recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 770–778.

[Howard et al. 2017] Howard, A. G.; Zhu, M.; Chen, B.;
Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.;
and Adam, H. 2017. MobileNets: Efficient. Convolutional
Neural Networks for Mobile Vision Applications. arXiv
preprint. arXiv:1704.04861.

[Howard et al. 2019] Howard, A.; Sandler, M.; Chu, G.;
Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang,
R.; Vasudevan, V.; et al. 2019. Searching for MobileNetV3.
arXiv preprint. arXiv:1905.02244.

[Hu, Shen, and Sun 2018] Hu, J.; Shen, L.; and Sun, G.
2018. Squeeze-and-Excitation Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 7132–7141.

[Liu, Simonyan, and Yang 2019] Liu, H.; Simonyan, K.; and
Yang, Y. 2019. DARTS: Differentiable Architecture Search.
In International Conference on Learning Representations.

[Qualcomm 2019] Qualcomm. 2019. Snapdragon Neural
Processing Engine SDK. https://developer.qualcomm.
com/software/qualcomm-neural-processing-sdk, version:
1.27.1.382.

[Sandler et al. 2018] Sandler, M.; Howard, A.; Zhu, M.; Zh-
moginov, A.; and Chen, L.-C. 2018. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4510–4520.

[Srivastava et al. 2014] Srivastava, N.; Hinton, G.;
Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R.
2014. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.

[Stamoulis et al. 2019] Stamoulis, D.; Ding, R.; Wang, D.;
Lymberopoulos, D.; Priyantha, B.; Liu, J.; and Marculescu,
D. 2019. Single-Path NAS: Designing Hardware-
Efficient ConvNets in less than 4 Hours. arXiv preprint.
arXiv:1904.02877.

[Tan et al. 2019] Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.;
and Le, Q. V. 2019. MnasNet: Platform-Aware Neural Ar-
chitecture Search for Mobile. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[Wu et al. 2019] Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun,
F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2019.
FBNet: Hardware-Aware Efficient ConvNet Design via Dif-
ferentiable Neural Architecture Search. In The IEEE Con-
ference on Computer Vision and Pattern Recognition.

[Xiaomi 2018] Xiaomi. 2018. Mobile AI Compute En-
gine. https://github.com/XiaoMi/mace, commit hashtag:
03362fa0.

[Yang et al. 2018] Yang, T.-J.; Howard, A.; Chen, B.; Zhang,
X.; Go, A.; Sandler, M.; Sze, V.; and Adam, H. 2018.
NetAdapt: Platform-Aware Neural Network. Adaptation for

https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://github.com/XiaoMi/mace


Mobile Applications. In Proceedings of the European Con-
ference on Computer Vision, 285–300.

[Zhang et al. 2018] Zhang, X.; Zhou, X.; Lin, M.; and Sun,
J. 2018. ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition.

[Zoph et al. 2018] Zoph, B.; Vasudevan, V.; Shlens, J.; and
Le, Q. V. 2018. Learning Transferable Architectures for
Scalable Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
8697–8710.


	1 Introduction
	2 Related Works
	3 Mobile GPU-Aware NAS Based on Multi-Objective Optimization
	3.1 Mobile GPU Awareness
	3.2 Underfitting and Overfitting
	3.3 Problem Formulation

	4 Solving it Using Weighted NSGA-II
	4.1 Search Space
	4.2 Accuracy and Latency Prediction
	4.3 Weighted NSGA-II
	4.4 Our NAS Pipeline

	5 Experiments
	5.1 Mobile GPU Latency
	5.2 Training
	5.3 Comparisons with State-of-the-art Methods
	5.4 Mobile GPU Awareness Analysis
	5.5 GPU Cost Analysis with More Mobile Devices

	6 Results
	6.1 Ablation Study

	7 Conclusion

