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ABSTRACT

Magnetic Resonance Imaging (MRI) is considered today the golden-
standard modality for soft tissues. The long acquisition times, how-
ever, make it more prone to motion artifacts as well as contribute to
the relative high costs of this examination. Over the years, multiple
studies concentrated on designing reduced measurement schemes
and image reconstruction schemes for MRI, however these problems
have been so far addressed separately. On the other hand, recent
works in optical computational imaging have demonstrated growing
success of simultaneous learning-based design of the acquisition and
reconstruction schemes manifesting significant improvement in the
reconstruction quality with a constrained time budget. Inspired by
these successes, in this work, we propose to learn accelerated MR ac-
quisition schemes (in the form of Cartesian trajectories) jointly with
the image reconstruction operator. To this end, we propose an algo-
rithm for training the combined acquisition-reconstruction pipeline
end-to-end in a differentiable way. We demonstrate the significance
of using the learned Cartesian trajectories at different speed up rates.
Code available at https://github.com/tomer196/fastMRI-Cartesian|

Index Terms— Magnetic Resonance Imaging (MRI), fast im-
age acquisition, image reconstruction, deep learning.

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a leading modality in med-
ical imaging due to its non-invasiveness, lack of harmful radiation,
and excellent contrast and resolution. However, its relatively long
image acquisition time currently complicating the use of MRI in
many applications such as dynamic imaging and in emergency
rooms. During the past few years, compressed sensing [1] and later
deep learning [2} 13| 4] have been in the forefront of MR image
reconstruction, leading to great improvement in image quality with
reduced scan times. Most studies applying deep learning to improve
accelerated MR imaging have concentrated on the reconstruction
stage, trying to restore a high quality image from a reduced set
of measurements obtained by sub-sampling the k-space (i.e., the
Fourier domain in which the image is directly acquired). A recent
line of works suggested to also learn the acceleration, or the k-space
sub-sampling scheme. In [5], the authors proposed to learn a sam-
pling scheme optimized for off-the-shelf fixed reconstruction meth-
ods, which does not fully exploit the strengths of simultaneously
learning sampling and reconstruction. In [6]], the authors learned
an arbitrary k-space sub-sampling together with the reconstruction.
However, the decimation rate controlling the speedup factor is not
imposed within the pipeline but introduced as an additional term in
the loss function. The major drawbacks of this method is the lack
of control of the number of measurements, and unrealistic learned
trajectories that might be impractical to implement in a real MRI
machine or result in lower speedup than the theoretically computed
one.

In [7] and [8]], the authors propose an active acquisition method
using two neural network models: one for the reconstruction, and an-
other one for selecting the next line to be acquired in the k-space (the
lines are restricted to a Cartesian grid). In each cycle, the current re-
constructed image and the k-space are used as an input to the model,
selecting the next sample. The former paper relies on an uncertainty
map-based mechanism, whereas the latter uses a Monte-Carlo tree
search. The major drawback of these methods are their complexity,
which is especially acute due to the stringent low-latency require-
ment of the real-time acquisition setting.

Contributions. In this paper, we propose to simultaneously
train a differentiable forward model (k-space sub-sampling) and
its inverse (the image reconstruction pipeline). The training is per-
formed end-to-end without imposing any complex line selection
mechanism. We show that by implementing this straightforward
trainable sampling-reconstruction scheme we achieve similar im-
provement margins compared to more complicated schemes.

2. METHOD

In our pipeline, we perform the sub-sampling in the k-space domain
and the reconstruction in the image domain, following an inverse
Fourier transform, as described schematically in Fig. m In what
follows, we describe each of these two ingredients in greater detail.

2.1. Sub-sampling layer

As depicted in Fig. [T] the sub-sampling layer receives a fully sam-
pled k-space, denoted as x and outputs the sub-sampled version
y = $x, where ® is a binary sub-sampling mask. Being restricted to
Cartesian trajectories, the sub-sampling mask @ is a column vector,
the length of the number of rows, M, of the k-space matrix.

In order to allow end-to-end joint training of the sub-sampling
mask and the reconstruction, the binary nature of the sub-sampling
operation must be taken into account. We follow the methodology of
[94110] proposing to keep two versions of the mask: binary, denoted
as ¥, and continuous, denoted as .. The two versions are used as
follows:

1. During forward and back propagation for calculating the gra-
dients, the binary version ® is used;

2. The gradient step with the calculated weight update 6P is ap-
plied to the continuous ®.;

3. The continuous mask ®. is binarized as follows to produce
an updated version of ®:

{1, if ()i, > 7,

0, otherwise

where 7 is determined as the upper g-tile of the values of ®.
with ¢ denoting the decimation rate.
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Fig. 1. Accelerated MRI acquisition and reconstruction. In standard approaches, the sub-sampling mask is fixed, and the reconstruction
network is trained to obtain the highest quality image. In our approach, the sub-sampling is a trainable layer in an end-to-end neural network

comprising both sensing and reconstruction.

In order to initialize the sub-sampling layer, we first generate a
semi-random mask, by choosing a pre-determined amount of low-
frequency rows, followed by randomly selecting additional higher
frequency rows until reaching the desired decimation rate. Conse-
quently, the continuous mask ®. is initialized by assigning a random
value from the uniform distribution U (0.5, 1) to each row selected
in ®, and a random value from the uniform distribution U (0,0.5)
otherwise.

2.2. Reconstruction network

As the inverse model, we used a multi-resolution encoder-decoder
network with symmetric skip connections, also known as the U-net
architecture [[TI]]. U-net is widely-used in medical imaging recon-
struction tasks in general and in MRI reconstruction in particular
[4]. The network is henceforth denoted as Gy, with 6 representing
its learnable parameters. The input to the network is the distorted
MR image, generated by the inverse Fourier transform of the sub-
sampled k-space, zi, = F *(®z); the output is the reconstructed
fully sampled MR image 2 = Gg(zin) estimating the groundtruth
image z = F ' (x).

The full flow of training our sampling-reconstruction scheme is
summarized in Algorithm|[T]

Algorithm 1 Learning Fast MRI
input: « - Full MRI k-space
1: Initialize ®: random Cartesian binary sampling mask, comply-
ing with the speedup factor ¢
2: Initialize ®.: according to the binary values, with random val-
ues from a uniform distribution
3: while (not converged) do
4: Apply binary mask y = ®x to obtain a reduced set of mea-
surements y
5. Forward pass: calculate loss L(F ' (z), Go(F " (®x)))
6: Backward pass: calculate gradients & = VgL, 660 =
VoL
Update weights ®, 0 (.. is updated using V)
Update binary mask ® by binarizing ®.

% 3

3. EXPERIMENTS AND DISCUSSION
3.1. Dataset
Data used in the preparation of this article were obtained from the

NYU fastMRI Initiative database (fastmri.med.nyu.edu) [4].
The NYU fastMRI investigators only provided the data but did not

participate in the analysis or in the writing of this reporlﬂ The
fastMRI dataset contains 1372 knee MRI volumes. Since the core
of our work is learning the k-space sub-sampling scheme and the
provided test set contains already sub-sampled MR images, we have
used the training set for our experiments and divided it into two sets:
one containing 973 volumes (34700 slices) for training and valida-
tion, and the other one containing 199 volumes (7100 slices) for
testing.

3.2. Settings

Training. We trained the U-net with the RMSprop [12] solver,
while the sub-sampling layer was trained with simple stochastic gra-
dient with momentum [13]], both with learning rate of 0.001. The
loss function was set to the L; error. For all our experiments, we
work with 2D slices processed using 2D CNNs. It should be men-
tioned that as the scope of this work was to show the benefit of simul-
taneously optimizing the sub-sampling pattern with the reconstruc-
tion model, we do not perform any architectural search for the re-
construction network, and use the U-net configuration that has been
used in [4]).

Different decimation rates. We performed our experiment with dif-
ferent decimation rates (speedup factors) of the k-space: 4, 8, 12,
and 16, corresponding to ¢ = 25%, 12.5%, 8.3% and 6.25% of the
measurements.

Different central fraction sizes. In this experiment, we fixed the
decimation rate and performed the evaluation while initializing the
sub-sampling mask with different sizes of the central fraction of the
k-space, that is, varying the rate of the active low frequency rows
in the k-space. For example, at decimation rate of 4 (25% of the
measurements) we initialize with the central fraction between 0% to
25%. In all experiments we compared our method to a fixed mask
scenario, where only the reconstruction model was trained. These
fixed masks served as the initialization for the learned mask experi-
ments.

3.3. Results and discussion

For the quantitative evaluation of our method, we selected the
commonly used peak-signal-to-noise-ratio (PSNR), and structural-
similarity measure (SSIM), and the normalized mean-squared-error
(NMSE), portraying both pixel-to-pixel and perceptual similarity.
Fig. 2] depicts the image distortion (in terms of PSNR, SSIM &
NMSE) as a function of the decimation rate; standard deviation
was calculated on repeated experiments with different initial central
fraction sizes (as previously explained in Section [3.2). The results

"More details regarding the dataset acquisition and split can be found in

().
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Fig. 2. Image reconstruction quality using fixed and learned masks for different decimation rates. Plotted are the average PSNR, SSIM &

NMSE and standard deviation across different initializations.

suggests that our method outperforms the fixed mask setting across
all decimation rates; the improvement is in the range of 0.45 — 0.8
dB PSNR, 0.012—0.017 SSIM points, and 0.002 —0.006 in NMSE.
It is interesting to notice the increased improvement in the higher
decimation rates, and that the proposed mask training method is
less sensitive to initialization — notice that the standard deviation
for the learned sampling is lesser than the fixed alternative (Fig. [2).
Visual inspection of one slice, displayed in Fig. [] supports this
quantitative evaluation. The zoomed-in area displays better contrast
and sharpness with our learned mask, comparing to the fixed masks
models. Additionally, observing the scaled difference maps, one
can see that our method produced lower errors than the fixed mask
reconstructions, especially in the highly detailed areas.
Comparison to the state-of-the-art. A fair quantitative com-
parison to the recently proposed learned accelerated MRI methods
is not practical for several reasons, including the lack of uniform
evaluation metrics and test sets, and the lack of availability of the
competing pre-trained models. However, we can still discuss the
improvement margins between the fixed and learned mask experi-
ments for all methods. In [5]], the authors reported margins of about
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Fig. 3. Mask evolution during training. Training progress is shown
on the horizontal axis in epochs. 4-fold acceleration (top) and 8-fold
acceleration (bottom).

2.5 dB PSNR, but their method was tested on a very limited test set
(60 slices compared to 7100 in our experiments). In [6], arbitrary
(non-Cartesian) masks were learned, and by that the sub-sampling
rates were not indicative of the acceleration rates, therefore it is not
comparable with our learned Cartesian masks. In [8], the authors
reported margins similar to ours (about 0.5dB — 1 dB PSNR) on
both knee and cardiac data sets with a 4-fold acceleration factor;
no results were reported for other acceleration rates. In [7]], the au-
thors reported similar results to ours (improvement by about 0.02
SSIM points); no PSNR values were reported. It is important to
emphasize that while exhibiting similar improvement on similar ex-
periments, the last two methods suggest a much more complex pro-
cessing pipeline.

Mask evolution. Fig. [3|displays the evolution of the the mask
during training for both 4— and 8—fold acceleration rates. A key
observation is that the model “selects” different frequency lines than
the ones of the initial mask, but still preserves similarity to it. This
implies that while the final mask is depended on the initialization,
the learning process consistently improves the performance of the
mask.

4. CONCLUSION AND FUTURE DIRECTIONS

We have demonstrated, as a proof-of-concept, that learning simul-
taneously the sub-sampling pattern and the reconstruction network
improves the end image quality of an MR imaging system. The
method can simply be implemented on the current scanners using the
Cartesian sampling in a multi-shot setting. It should be mentioned
that since the results were affected by the mask initialization, we
can assume the models have not reached the globally optimal con-
figuration — otherwise, all patterns would have converged to similar
performance. This calls for better optimization techniques that are
more robust to initialization — a statement that is true for practically
every deep learning model.

The main limitation of our work is the restriction of the optimal
sub-sampling patterns to Cartesian trajectories, which are the most
commonly used schemes in MR machines today. However, higher
speed-ups can be gained by going beyond the Cartesian sampling,
while still adhering to the constraints of the machine. Research has
been conducted on designing optimal non-Cartesian trajectories (see
[14] and references therein). In a recent work [15], we show that by
learning arbitrary optimal k-space trajectories and the reconstruction
model simultaneously while imposing the machine physical con-
straints, we achieve a greater quality of the resulted images com-
paring to Cartesian acquisition, while maintaining the trajectories
physically feasible. In the future, we plan to conduct prospective
accelerated acquisitions on real MRI scanners using these learned
protocols.
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Fig. 4. Visual comparison between fixed/learned masks for different decimation rates. Rows 1-2 show the reconstructed image generated by
the Fixed/Learned mask models; rows 3-4 depict the difference map between the reconstruction and the ground truth (darker represents higher
error); rows 5-6 show the fixed initial mask and the learned mask. The masks are rotated 90° counterclockwise for the ease of comparison.
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