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ABSTRACT

Automatic meeting analysis is an essential fundamental tech-
nology required to let, e.g. smart devices follow and respond
to our conversations. To achieve an optimal automatic meet-
ing analysis, we previously proposed an all-neural approach
that jointly solves source separation, speaker diarization and
source counting problems in an optimal way (in a sense
that all the 3 tasks can be jointly optimized through error
back-propagation). It was shown that the method could well
handle simulated clean (noiseless and anechoic) dialog-like
data, and achieved very good performance in comparison
with several conventional methods. However, it was not
clear whether such all-neural approach would be successfully
generalized to more complicated real meeting data contain-
ing more spontaneously-speaking speakers, severe noise and
reverberation, and how it performs in comparison with the
state-of-the-art systems in such scenarios. In this paper,
we first consider practical issues required for improving the
robustness of the all-neural approach, and then experimen-
tally show that, even in real meeting scenarios, the all-neural
approach can perform effective speech enhancement, and
simultaneously outperform state-of-the-art systems.

Index Terms— Source separation, source number count-
ing, speaker tracking, diarization

1. INTRODUCTION

Automatic meeting/spoken-conversation analysis is one of
essential fundamental technologies required for realizing,
e.g. communication robots that can follow and respond to
our conversations. The meeting analysis comprises several
tasks, namely (a) diarization, i.e., determining who is speak-
ing when, (b) source counting, i.e., estimating the number
of speakers in the conversation, (c) source separation, and
(d) automatic speech recognition (ASR), i.e., transcribing
the separated streams corresponding to each person. While
ideally these tasks should be jointly accomplished to realize
optimal meeting analysis, most studies focus on one of the
aforementioned tasks, since each task itself is already very
challenging in general.

For example, a considerable number of research has been
carried out for developing reliable diarization systems [1–

3]. Most of the conventional diarization approaches perform
block or block-online processing with the following two steps
[1, 4–7]. First, at each block, they perform source separation
(if necessary) and obtain speaker identity features concerning
each speaker, in the form of, e.g. i-vector [8], x-vector [9],
or spatial signature [4, 5, 10]. Then, the correct association
of speaker identity information among blocks, i.e., diariza-
tion results, is estimated by clustering these features by using
e.g. agglomerative hierarchical clustering [7]. Although these
conventional algorithms can achieve reasonable diarization
performance, the results are not guaranteed to be optimal, be-
cause the steps concerning speaker identity feature extraction
and clustering are done independently. Focusing on this lim-
itation, [11] recently proposed a neural network (NN)-based
diarization approach that directly outputs diarization results
(without any clustering stage), and showed that it can outper-
form a conventional two-stage approach [7] in CALLHOME
task where two people speak over a phone channel. Note that,
although some diarization systems can deal with overlapped
speech, it does not mean that they can perform speech en-
hancement, i.e., separation and denoising, which is eventually
required for the meeting analysis.

Another key challenge for automatic meeting analysis is
the separation of overlapped speech. Perhaps surprisingly,
even in professional meetings, the percentage of overlapped
speech, i.e., time segments where more than one person is
speaking, is in the order of 5 to 10%, while in informal get-
togethers it can easily exceed 20% [12]. To address the source
separation problem, recently, many NN-based single-channel
approaches have been proposed, such as Deep Clustering
(DC) [13], and Permutation Invariant Training (PIT) [14, 15].
DC can be viewed as two-stage algorithms, where in the
first stage embedding vectors are estimated for each time-
frequency (T-F) bin. In the second stage, these embedding
vectors are clustered to obtain separation masks, given the
correct number of clusters, i.e., sources. PIT, on the con-
trary, is a single-stage algorithm, because it lets NNs directly
estimate source separation masks. In PIT, however, the NN
architecture depends on the maximum number of sources to
be extracted.

To lift this constraint on the number of sources, we pro-
posed Recurrent Selective Attention Network (RSAN) that is
a purely NN-based mask estimator capable of separating an
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arbitrary number of speakers and simultaneously counting the
number of speakers in a mixture [16]. It extracts one source
at a time from a mixture and recursively performs this pro-
cess until all sources are extracted. The RSAN framework
is based on a recurrent NN (RNN) which can learn and de-
termine how many computational steps/iterations have to be
performed [17]. Following the idea of the recursive source
extraction, [18] proposed to incorporate a time-domain audio
separation network (TasNet) [19] into the RSAN framework.

To go one step further toward ideal meeting analysis that
deals with aforementioned tasks (a)(b)(c) simultaneously,
in [12], RSAN was extended to an all-neural block-online
approach (hereafter, online RSAN) that simultaneously per-
forms source separation, source number counting and even
speaker tracking from a block to a block, i.e., performing the
diarization-like process. It was shown that online RSAN can
handle well-controlled scenarios such as clean (noiseless and
anechoic) simulated dialog-like data of 30 seconds, and out-
perform conventional systems in terms of source separation
and diarization performance.

However, it was not clear from our past studies whether
such all-neural approach, i.e., online RSAN, can be general-
ized to realistic meeting scenarios containing more spontaneously-
speaking speakers, severe noise and reverberation, and how it
performs in comparison with the state-of-the-art systems. To
this end, this paper focuses on the application of the online
RSAN model to the realistic situations, and its evaluation in
comparison with state-of-the-art diarization algorithms. We
first review the online RSAN model (in Section 2) and in-
troduces practical techniques to increase robustness against
real meeting data, such as a decoding scheme that mitigates
over-estimation error in source counting (in Section 3.3). We
then carry out experiments with real and simulated meet-
ing data involving up to 6 speakers, containing a significant
amount of noise and reverberation. Then, finally, it will be
shown that, even in such difficult scenarios, online RSAN
can still perform effective speech enhancement, i.e., source
separation and denoising, and simultaneously outperform a
state-of-the-art diarization system [20] developed for a re-
cent challenge [2]. This finding is the main contribution of
this paper. Before concluding this paper, we also discuss the
challenges that remain.

2. OVERALL STRUCTURE OF ONLINE RSAN

Figure 1 summarizes how online RSAN works on the first 2
blocks of an example mixture containing three sources. Since
the model works in a block-online manner, we first split the
input magnitude spectrogram Y into B consecutive blocks of
equal time length, [Y1, . . . ,Yb, . . . ,YB ], before feeding it to
the system.

Online RSAN estimates a source extraction mask M̂b,i

in each b-th block recursively to extract all source signals
therein, while judging at each i-th source extraction iteration

Fig. 1. Overview of online RSAN framework

whether or not to proceed to the next iteration to extract more
source signals. The same neural network “NN” is repeatedly
used for each block and iteration. At every iteration in b-th
block, NN receives three inputs, a residual mask Rb,i (res-
mask in the figure), an input spectrogram Yb, and an auxiliary
feature zb−1,i (speaker embed. vec. in the figure) to estimate
a mask for a specific speaker M̂b,i and a speaker embedding
vector representing that specific speaker zb,i as:

M̂b,i, zb,i = NN(Yb,Rb,i, zb−1,i). (1)

The residual mask can be seen as an attention map that in-
forms the network where to attend to extract a speaker that
was not extracted in previous iterations in the current block.
At every first iteration in the b-th block, the residual mask is
initialized with Rb,0 = 1.

In the first processing block, b = 1, where we have
two sources, online RSAN performs two source extrac-
tion iterations to extract all sources. Since it is the first
block, no speaker information is available from the previous
block. Therefore, the input speaker information is set to zero,



z0,i = 0. Without guidance, the network decides on its own
in which order it extracts the source signals. Fig. 1 shows
a situation where source 1 is extracted at the first iteration.
Then, the first iteration is finished after generating another
residual mask for the next iteration by subtracting the esti-
mated source extraction mask from the input residual mask
as R1,1 = R1,0 − M̂1,1. At the second iteration, the network
receives the residual mask R1,1 and input spectrogram Y1 to
estimate a mask for another source. Then, it follows the same
procedure as the first iteration. The network decides to stop
the iteration by examining how empty the updated residual
mask is. Specifically, the source extraction process is stopped
in iteration i if 1

TF

∑
tf Ri,tf < tres-mask where T and F

correspond to the total number of time frames and frequency
bins in the block, and tres-mask is an appropriate threshold.

Note that the speaker embedding vector zb,i is passed to
the next time block, b+1, and guides the i-th iteration on that
block to extract the same speaker as in (b, i). In the figure,
it can be seen that the green source (source 1) is always ex-
tracted in the first, the blue in the second and the pink in the
third iterations. If a source happens to be silent in a particular
block (see the 2nd iteration in block 2), the estimated mask is
to be filled with zeros (M̂b,i = 0), and the residual mask is to
stay unmodified (Rb,i = Rb,i−1).

At the second iteration of block 2, the criterion to stop
the source extraction iteration is not met because the residual
mask is not empty. In such a case, the model increases the
number of iterations to extract any new speaker until the stop-
ping criterion is finally met. Overall, by having this structure,
the model can perform jointly source separation, counting and
speaker tracking.

To deal with background noise, in this study, we force on-
line RSAN to estimate a mask for the noise always at the first
source extraction iteration in each block (see Fig. 1). With
this scheme, we can easily identify signals corresponding to
background noise among separated streams and discard them
if necessary.

3. SUMMARY OF PRACTICAL TECHNIQUES
REQUIRED TO HANDLE REAL MEETING DATA

This section summarizes techniques that we incorporated into
online RSAN to cope with noisy reverberant real meeting
data. They are divided into categories of input feature, train-
ing schemes, and decoding scheme and summarized in the
following dedicated subsections.

3.1. Input feature: Multichannel feature

As in much past literature, e.g. [21], our preliminary experi-
ments confirmed that a multichannel feature as an additional
input helps improve separation performance in reverberant
environments. In this study, therefore, the inter-microphone
phase difference (IPD) feature proposed in [21] is concate-

nated by default to the magnitude spectrogram and used as
input to online RSAN.

3.2. Training scheme

To train online RSAN, we used training data comprising a pair
of noisy reverberant meeting-like mixtures, and correspond-
ing noiseless reverberant single-speaker signals.

3.2.1. Cost function for model training

During training, the network is unrolled over multiple blocks
and iterations and was trained with back-propagation using
the following multi-task cost function:

L = Ł(MMSE) + αŁ(res-mask) + βŁ(TRIPLET) (2)

In the following, we explain each term on the right-hand side
of the above equation, starting from Ł(MMSE).

At each iteration, the network is required to output a
mask for a certain source, but the order of source extraction
when they first appear is not predictable. In such a case, a
permutation-invariant loss function is required. Once a source
was extracted and the permutation was chosen to minimize
the error on its first appearance, its position in the iteration
process is fixed for any following blocks, as the embedding
vectors are passed and thus the desired output order is known.
Consequently, a partially permutation-invariant utterance-
level mean square error (MSE) loss can be used for online
RSAN as:

Ł(MMSE) =
1

IB

∑
i,b

|M̂i,b �Y −Aφb
|2, (3)

where Aφb
is a target reverberant single-speaker signal. 1.

When a source was active before, but is silent on the current
block, a silent signal Ab,i = 0 are inserted as a target. The
permutation φb for b-th block is formed by concatenating the
permutation used for the last block φb−1 with the permutation
φ∗b that minimizes the utterance-level separation error for the
newly discovered sources in block b. To force the network
to estimate a mask for the noise always at the first source ex-
traction iteration, we always inserted noise magnitude spec-
trogram as a target at the first iteration, and from the second
iteration, we used the above partially permutation-invariant
loss.

Ł(res-mask) is a cost function related closely to the source
counting performance. To meet the speaker counting and it-
eration stopping criterion when all sources are extracted from
a mixture, we minimize this cost and pushes the values of
the residual mask to 0 if no speaker is remaining (see [16]
for more details). we minimize the following Ł(res-mask) and

1To handle reverberant mixture, it was found in our preliminary investi-
gation that the target signal matAφb

has to be magnitude spectrum of rever-
berant (not anechoic clean) speech



pushes the values of the residual mask to 0 if no speaker is
remaining.

Ł(res-mask) =
∑
b,tf

[
max

(
1−

∑
i

M̂b,i, 0

)]
tf

(4)

Ł(TRIPLET) is a triplet loss that is shown to help increase
speaker discrimination capability, by ensuring the cosine sim-
ilarity between each pair of embedding vectors for the same
speaker is greater than for any pair of vectors of differing
speakers. It is formed by first choosing one anchor vector
a, a positive vector p belonging to the same speaker as a,
and a negative vector n belonging to a different speaker from
a, from a set of speaker embedding vectors within one mini-
batch. Based on the cosine similarities between the anchor
and negative vectors sani , and the anchor and the positive
vectors sapi , the triplet loss for N triplets can be calculated
as [22]:

Ł(TRIPLET) =

N∑
i=0

max(sani − s
ap
i + δ, 0). (5)

where δ is a small positive constant. Interestingly, in this
study, this loss was found to improve not only speaker dis-
crimination capability but also speaker tracking capability of
online RSAN. When training with meeting-like data where
people speaks intermittently, one minibatch is usually formed
with only a part of a meeting, in which very often certain
speaker speaks only one time and remains silent to the end
of this meeting excerpt (although he/she may start speaking
again in a later part of the meeting). If we do not use the triplet
loss, the network is not encouraged to keep remembering such
a person to the end of the meeting, and eventually, it starts es-
timating a speaker embedding vector irrelevant to the speaker.
To circumvent such issue and make the network ready always
for a situation when he/she starts speaking again, we can use
the triplet loss and make the network always output speaker
embedding vectors that are consistent over frames no matter
whether the speaker is speaking or not.

3.2.2. Noise mask

To deal with background noise in the mixture, we let the net-
work to estimate a mask for background noise always at the
first source extraction iteration in each block. To force such
behavior to the network, we used the following permutation
variant loss (as oppose to permutation invariant loss) for the
mask for background noise:

Ł(MMSE) =
1

B
|M̂1,b �Y −A

(noise)
b |2, (6)

where A
(noise)
b is the magnitude spectrum of background

noise. With this scheme, we can easily find and discard sig-
nals corresponding to background noise from enhancement
results.

3.2.3. Teacher forcing for iterative source extraction

During training, when calculating residual mask Rb,i+1 at
b-th block for the (i + 1) -th iteration, instead of using
the estimated source extraction mask at the i-th iteration,
we can calculate it by using an oracle source extraction
mask M̂(oracle)

b,i based on the estimated permutation [16], i.e.,
Rb,i+1 = Rb,i −M(oracle)

b,i . In RNN literature, this form of
training is known as teacher forcing. While the effectiveness
of this scheme was not so clear in the previous study [16],
we found it mandatory when we cope with noise and many
speakers, both of which are inevitable during training with
meeting-like data.

3.3. Decoding scheme: decoding with consistency check

Real meeting data contains a lot of unexpected sound events
that are hardly observed in the training data, such as laughing
sounds, a sudden change in tone of voice, coughing sound,
and rustling sounds from e.g. papers, to name a few. All of
these sounds can be a cause for online RSAN to mistakenly
detect a new spurious speaker and increase the number of
source count. When it increases the source count by mis-
take because of such unexpected unseen sounds, it tends to
wrongly split a speaker into two; the new embedding vector
and an embedding vector already associated with the speaker.
It causes over-estimation errors in the source counting, and
degrades embedding vector representation of the speaker,
leading to degradation in overall performance.

Let us denote the speaker embedding vector set at b′-th
block as {zb′,i}1≤i≤Ib′ where Ib′ corresponds to the total
number of iteration in b′-th block. Then, to reduce such over-
estimation error in source counting, we propose to perform
the following consistency check for the speaker embedding
vector set, {zb′,i}1≤i≤Ib′ , when online RSAN increases the
speaker count. Specifically, we propose to decode all the past
blocks with the embedding vector set {zb′,i}1≤i≤Ib′ . Then,
if masks estimated with zb′,Ib′ , {M̂b,Ib′}1≤b≤b′ , does not
exceed tres-mask, it indicates that a speaker corresponding to
zb′,Ib′ did not indeed appear in the past blocks and appeared
for the first time at b′-th block. And thus, we accept the in-
crease in the source count and keep using {zb′,i}1≤i≤Ib′ for
further process. Otherwise, we do not accept the increase in
the speaker count, and discard {zb′,i}1≤i≤Ib′ and replace the
set of embedding vectors with ones from the previous block
{zb′−1,i}1≤i≤Ib′−1

for further process.

4. EXPERIMENTS

In this section, we evaluate online RSAN in comparison with
state-of-the-art diarization methods, and shows its effective-
ness.



4.1. Experimental conditions

4.1.1. Data

We generated three sets of noisy reverberant multi-speaker
datasets for training; (dataset A) 20000 mixtures each of
which is 10 seconds in length, and contains 1 or 2 speakers’
speech signals, (dataset B) 10000 mixtures each of which is
60 seconds in length, and contains 1 to 6 speakers’ speech
signals, and (dataset C) 2372 mixtures each of which is 60
seconds in length, and contains 1 to 6 speakers’ speech sig-
nals. To all dataset, we added CHiME4 noise with SNR of
10 to 20 dB, and reverberation of RT60 of 300 to 700 ms.
Utterances for dataset A and B are taken from WSJ0 [23],
i.e., read speech, while those for dataset C are taken from
headset recordings of real meetings recorded in our office,
i.e., spontaneous speech. In dataset A, each mixture was
generated such that the first 5 s contain one or two speakers
with a probability of 50% each, while the second half con-
tains zero, one or two speakers with a probability of 15%,
55% and 30%, respectively. Similarly, in dataset B, the first
5 s of the test utterance contains zero or one speaker with a
probability of 50% each, while the mixture in the remaining
time is generated such that it contains zero, one, two or three
speakers with a probability of 5%, 75% and 15% and 5%
respectively.

Evaluation was done with two datasets; (1) simulated
meeting-like data comprising 1000 mixtures similar to dataset
B but with unseen speakers, and (2) real meeting data
recorded at our office with a distant microphone-array [24].
Real meeting dataset consists of 8 meetings, each of which is
15 to 20 minutes in length. The number of meeting partici-
pants varies from 4 to 6, all of who are unseen during training.
The meeting recording contains a significant amount of bab-
ble noise (SNR of 3 to 15 dB), and reverberation of RT60
of 500 ms. The percentage of overlapped speech in these
meetings is found to be 25.7 % on average.

4.1.2. Implementation details of online RSAN

NN architecture and hyper-parameters for online RSAN was
same as [12]. It consists of one fully connected layer on top
of two BLSTM layers. Multichannel input feature was cal-
culated based on signals observed at 2 microphones, and thus
overall online RSAN model in this study is a 2-channel sys-
tem. For the evaluation based on the simulated meeting-like
data, the online RSAN model was first trained with the train-
ing dataset A for 300 epochs, and then further trained with
dataset B for 50 epochs. Then, to cope with real meeting data,
the model was further trained with dataset C for 5 epochs. The
block size of online RSAN was set at 10 seconds. tres-mask was
set at 0.2. To obtain diarization results with online RSAN,
we performed power-based voice activity detection (VAD) on
extracted streams based on a threshold value common to one
meeting.

Table 1. DERs for simulated meeting-like data (%)
x-vector clustering Online RSAN

44.39 33.7

4.1.3. Methods to be compared with

In the evaluation with the simulated meeting-like data, the
performance of online RSAN was compared with a system
similar to a top-performing system [7] in DIHARD-1 chal-
lenge [2]. For this, we used off-the-shelf implementation and
model from [20]. Since it is based on clustering of x-vectors
[9], it will be referred to as “x-vector clustering” hereafter. It
is a single-channel system.

For the real meeting data evaluation, the performance of
online RSAN was compared with “x-vector clustering” and a
multi-channel diarization method based on online clustering
of Time-Difference-Of-Arrival (TDOA) feature [25], which
will be referred to as “TDOA clustering”. The TDOA feature
was calculated based on signals observed at 8 microphones.
Diarization performance was evaluated in terms of diarization
error rate (DER) [26] including speaker overlapped segments,
while the speech enhancement performance was evaluated in
terms of signal-to-distortion ratio (SDR) in BSSeval [27]. The
sampling frequency was 8k Hz for all the methods.

4.2. Experiment 1: Evaluation with simulated meeting-
like data

Before proceeding to evaluation with real meeting data, we
briefly examine the performance of online RSAN and whether
it is ever possible to cope with noisy reverberant mixtures
containing many speakers. Table 1 shows DERs of online
RSAN and x-vector clustering, averaged over 1000 mixtures.
It was found that online RSAN works for noisy reverber-
ant data, and outperformed the state-of-the-art x-vector clus-
tering. SDR improvement obtained with online RSAN was
10.01 dB, which we believe is reasonably high.

4.3. Experiment 2: Real meeting data

Now we evaluate the performance of online RSAN with real
data. We first evaluate effect of consistency-checking decod-
ing (proposed in section 3.3). Also, since it may not be clear
how much and what kind of training data would be neces-
sary for online RSAN to cope with real data, we examined
the effect of training with dataset C, i.e., spontaneous speech.
Table 2 suggests that both training with spontaneous speech
and decoding with the consistency check is important. Note
that, although one may think that DERs here are very high, it
is in a similar range as DIHARD2 as you can see in [20].

Now, let us compare, with the other methods, the perfor-
mance of online RSAN model trained on dataset A, B, and C
and decoded with the consistency check. While we use a dif-
ferent threshold for power-based VAD for each meeting for



Fig. 2. Spectrograms of 3 minute excerpt from real meeting data: observed signal (a), headset recordings of each speaker
(b,c,d), and signals estimated by online RSAN (b’,c’,d’)

Table 2. Effect of model training with spontaneous speech,
and decoding with consistency check when dealing with real
meeting data

system DER (%)
Online RSAN trained only with dataset A & B 73.9

+ dataset C 56.3
+decoding with consistency checking 49.6

table 2 to take a closer look at the difference between each
setting, we reran the experiments with a common threshold
for all meetings to make a fair comparison with the other
methods. The threshold was determined based on the vali-
dation dataset. Table 4.3 shows DERs of online RSAN, x-
vector clustering and TDOA clustering. While there are some
sessions where deep learning-based algorithms, i.e. x-vector
clustering and online-RSAN did not work well, on average,
even in the real meeting scenario, online RSAN can outper-
form these conventional approaches.

Figure 2 shows spectrograms of unprocessed real meeting
data (3-minute excerpt from one of the meetings used for the
evaluation), corresponding headset recording of each speaker,
and signals estimated by online RSAN. Noise signals esti-
mated by online RSAN are omitted from the figure. Audio
examples corresponding to the spectrograms are available on
our web-page [28]. As it can be seen, the headset record-
ings and the estimated signals look quite similar, which sug-

gests that online RSAN extracted each speaker’s voice clearly,
and counted the number of speakers correctly. Note that, as
the third speaker did not speak for the first 2 minutes, online
RSAN did not output masks for that speaker in that period,
and once that speaker starts speaking, it correctly increased
the number of source extraction iteration to 4 (i.e., 3 speakers
+ noise) and started tracking that speaker.

4.4. Discussion

Although online RSAN could cope with real meeting data
to some extent, its performance was far from “perfect”. We
found that most errors in the online RSAN process are due
to its insufficient performance in source separation and track-
ing. It sometimes confidently extracts or tracks two differ-
ent speakers’ signals with one speaker embedding vector
{zb,i}1≤b≤B , probably because their voice characteristics are
similar from the system’s point of view. This type of error
should be reduced by, for example, employing more advanced
NN architecture [18], and increasing the number of speakers
in training data like we propose in [29].

5. CONCLUSION

This paper proposed several practical techniques required for
all-neural diarization, source separation and source counting
model called online RSAN to cope with real meeting data.



Table 3. DERs for noisy reverberant real meetings for each system
Meeting

ID # of spk.
x-vector

clustering
TDOA

clustering
Online
RSAN

1 6 51.2 46.8 41.4
2 6 61.8 64.6 58.4
3 6 73.5 62.6 49.0
4 5 57.6 23.8 55.7
5 5 64.2 47.5 72.5
6 6 71.4 67.2 40.3
7 4 68.1 73.6 45.5
8 4 72.4 70.9 48.8

Average 65.0 57.1 51.4

It was shown that incorporation of the proposed consistency-
checking decoding and training with spontaneous speech is
effective. Based on the experiments with real meeting record-
ings, online RSAN was shown to perform effective speech
enhancement, and simultaneously outperform state-of-the-art
diarization systems. Our future work includes incorporation
of advanced source separation NNs into online RSAN, and
evaluation in terms of ASR accuracy.
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