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ABSTRACT

We propose a speech enhancement method using a causal deep neu-
ral network (DNN) for real-time applications. DNN has been widely
used for estimating a time-frequency (T-F) mask which enhances
a speech signal. One popular DNN structure for that is a recur-
rent neural network (RNN) owing to its capability of effectively
modelling time-sequential data like speech. In particular, the long
short-term memory (LSTM) is often used to alleviate the vanish-
ing/exploding gradient problem which makes the training of an RNN
difficult. However, the number of parameters of LSTM is increased
as the price of mitigating the difficulty of training, which requires
more computational resources. For real-time speech enhancement,
it is preferable to use a smaller network without losing the perfor-
mance. In this paper, we propose to use the equilibriated recurrent
neural network (ERNN) for avoiding the vanishing/exploding gradi-
ent problem without increasing the number of parameters. The pro-
posed structure is causal, which requires only the information from
the past, in order to apply it in real-time. Compared to the uni- and
bi-directional LSTM networks, the proposed method achieved the
similar performance with much fewer parameters.

Index Terms— Real-time speech enhancement, equiribriated
recurrent neural network, vanishing/exploding gradient problem.

1. INTRODUCTION

Speech enhancement is used for recovering the target speech from
a noisy observed signal. In the single-channel case, the standard
method is time-frequency (T-F) masking in the short-time Fourier
transform (STFT) domain. Recently, speech enhancement is ad-
vanced by the use of a deep neural network (DNN) to estimate a
T-F mask. For effectively modelling a speech signal which is time-
sequential data, a recurrent neural network (RNN) is used in various
speech signal processing applications [[1H14].

While it has been effectively applied to speech enhancement,
RNN is difficult to train in general because the gradient of RNN
vanishes or explodes at an exponential rate by performing back-
propagation to the same layer repeatedly. This difficulty of train-
ing RNN is so-called the vanishing/exploding gradient problem [|15],
and several methods have been proposed to solve it [[16H18]]. One
of the popular DNN structures to mitigate this problem is the long
short-term memory (LSTM) [18] illustrated in Fig.[T{a). By com-
bining three gated units (input gate, forget gate and output gate),
LSTM solves the vanishing gradient problem to some extent. As it
can be trained effectively in practice, LSTM and the bidirectional
LSTM (BLSTM) has been applied to speech enhancement and per-
formed better than the conventional methods at the time [2}}4},/8H14]].

Considering a practical situation in the real world, some research
on DNN-based speech enhancement has focused on real-time ap-
plication [[I9-23]]. To apply an enhancement method in real time,
the system must be causal, i.e., it uses past information only and
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Fig. 1. Block diagrams of LSTM and ERNN. “FC” stands for fully-
connected layer. The same DNN .% is repeatedly applied in ERNN.

does not require future information to estimate the enhanced signal.
Therefore, uni-directional LSTM are often used in that task [[19-22].
However, as the price of mitigating the vanishing gradient prob-
lem, LSTM consists of a lot of parameters as in Fig. Eka), Since
more parameters require more computational resources, a simpler
RNN should be more suitable for real-time speech enhancement than
LSTM if the gradient problem can be solved in a different way.

In this paper, we propose a real-time speech enhancement
method using a causal RNN with much fewer parameters compared
to LSTM. In the proposed method, the equilibriated recurrent neural
network (ERNN) [24] is used for the T-F mask estimator. ERNN is a
simpler RNN as in Fig. [[[b) and can avoid the vanishing/exploding
gradient problem by iteratively applying the same layer to the hid-
den state vector. Ideally, the gradient of ERNN in back-propagation
does not vanish or explode [24]), and therefore long-term dependen-
cies in the sequential data can be learned without the gated units
as in LSTM. As a result, the number of parameters of ERNN can
be noticeably decreased while maintaining the speech enhancement
performance. The experimental results confirmed that the proposed
method can reduce the number of parameters to less than 1/5 times
that of the LSTM network without sacrificing the performance.

2. DNN-BASED SPEECH ENHANCEMENT

This paper focuses on T-F masking for speech enhancement. In this
section, after introducing DNN-based T-F masking and RNN briefly,
real-time speech enhancement is explained.



2.1. Time-frequency masking based on DNN

The aim of speech enhancement is to recover the target speech signal
s¢ degraded by noise n; from an observed signal x+,

Tt = St + N, (1)
where £ is the time index. It can be rewritten in T-F domain as
Xw,T == Sw,T + Nw,r, (2)

where X is the T-F representation of = (spectrogram obtained by
STFT in this paper), and w = 1,...,Q and 7 = 1,...,7T denote
the indices of frequency and time frame, respectively. In T-F mask-
ing, the estimated target signal S‘w, is acquired by the element-wise
multiplication of a T-F mask G., - to the observation X, ,:

Sw,‘r = Gw,r Xw,‘r- (3)

Then, the enhanced result is transformed back to the time domain by
the inverse transform. The T-F mask G, - must be estimated solely
from X, -, which is the difficult part.

Many methods have applied DNN to estimate the T-F mask. In
deep-learning-based approach, a T-F mask G, - is estimated as

Gw,‘r = M@(\II)L/J,T (4)

where My is a regression function implemented by DNN, 6 is the
set of its parameters, and ¥ = W(X) is the input acoustic feature.
Since the signal is time-sequential data indexed by 7, RNN is often
used for realizing the regression function M.

2.2. Recurrent neural network (RNN) and LSTM

Among many DNN structures, RNN is a popular network for mod-
elling time-sequential data including speech. RNN consists of a
function .# which output the current hidden state vector h, from the
past state vector h,_1 and the current input feature 1, as follows:

hr = F(Yr, hr-1), ®

where the recurrent structure on the state vector i, enables to learn
the long-term dependencies of time series with fewer parameters
comparing to non-recurrent networks.

Although an RNN can effectively handle information from the
past, it may not perform well in practice because of the difficulty
on its training, the so-called vanishing/exploding gradient problem.
When back-propagation is performed to RNN, the gradient passes
through the same layer repeatedly. Then, by the chain rule, the gra-
dient on the current state vector h. from the past state vector h, is
the product of gradients for all intermediate state vectors:
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Therefore, the back-propagated gradient vanishes or explodes at an
exponential rate unless the norm of each gradient is equal to one, i.e.,
|07 /0h-|| =1 (p <7 < c). Even though an RNN has ability to
model the long-term dependency, learning it is difficult because the
dependency between the current and past information is quickly lost
as the gradient quickly vanishes.

To mitigate the vanishing or exploding gradient problem of
RNN, several methods have been developed [I6HI8]. One of the
most standard methods is LSTM illustrated in Fig. [[{a). It
includes an additional recurrent loop of the so-called cell state so
that the information from the past is retained unless the forget gate
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Fig. 2. Illustration of non-causal and causal estimators. While a non-
causal DNN uses future information for estimating the current T-F
mask, a causal DNN requires only past and current information.

eliminates it. The magnitude of the gradient of LSTM does not de-
crease when the forget gate is open, and thus the vanishing gradient
problem is avoided by assuming that the forgate gate properly select
the information. Since it works well in practice, LSTM plays an
important role in the DNN-based speech enhancement. However,
since the gated unit consists of twice as many parameters than the
linear layer, LSTM consists of a lot of parameters, which requires
more computational resources compared to a simpler RNN.

2.3. Real-time speech enhancement and causal RNN

Some research on DNN-based speech enhancement has focused on
the real-time application for applying it to a practical situation in the
real world [19][20][221[23]). To apply an enhancement method in real
time, the system must be causal as illustrated in Fig. [2] In general,
T-F mask G at time index 7 can be estimated from the input feature
W obtained from both past and future,

GT:MQ(‘--7¢7—+17w77¢7717--~)7 (7)

as illustrated in Fig. a), where G, = [Gi,r,...,Gq,] . How-
ever, such non-causal network cannot be applied in real time be-
cause the information in future ,41,%-42,... is not available at
the time of estimating G'~. It requires some delay for buffering the
input feature until all necessary information is obtained. For real-
time applications, the network must be causal, i.e., estimation must
be performed based on the past information only:

GT :Ma(w‘rwa—lywr—%n-)- (8)

This requirement makes RNN suitable for real-time applications be-
cause the past information can be encoded into the hidden state vec-
tor h so that only the input feature v~ and the state vector h,_; are
required for estimating the mask at time 7 as

GT :Me(w77h771)~ (9)

Owing to the causality and the advantage on training as explained
in the previous subsection, uni-directional LSTM are often used in
real-time speech enhancement [19120,[22]]. While LSTM performs
well in practice, any causal RNN written in the form of Eq. (9) can
be used for real-time speech enhancement. That is, it should be pos-
sible to construct a computationally cheaper RNN for the real-time
application if the training issue can be solved.
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Fig. 3. Mlustration of DNN .# utilized for ERNN in this paper. “FC”
stands for a fully-connected layer, and Ny and Ny, are the dimension
of the matrix of each fully-connected layer.
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3. PROPOSED METHOD

For real-time speech enhancement, a causal DNN with fewer param-
eters is preferred for reducing the computational requirement. Con-
sidering such conditions, we propose a causal DNN-based speech
enhancement method using ERNN illustrated in Fig.[T(b).

3.1. Equilibriated recurrent neural network (ERNN)

ERNN is an RNN which avoids the vanishing/exploding gradient
problem by the skip connections and repeated application of the
same block [24]. It is inspired by the fixed point recursion of the
implicit discretization scheme for an ordinary differential equation.
By introducing an intermediate variable & (*) with iteration index
k=0,...,K — 1, asimple form of ERNN can be written as

¥ = ) 4 M Z 4y, €M 4 hro1) = (6P + heo1)], (10)

where 17®) is a small trainable scalar, K is the total number of itera-
tion, the initial value £ is typically 0, and the updated state vector
h, is given as the iterated result h, = £ (K ), i.e., ERNN returns
h. after K iteration based on the inputs 1, and h,_1 as in Eq. (3).
Here, . is a nonlinear function implemented by a neural network,
which makes Eq. (T0) a multilayer RNN as in Fig. [T(b).

The notable property of ERNN is that its gradient does not van-
ish or explode in the ideal situation [24]. That is, the norm of the
gradient is equal to one: ||Oh./Ohy|| =1 (p < c¢). Therefore, it is
expected that ERNN can learn the long-term dependencies without
suffering from the training issue because the gradient survives in the
parameter update for all time instances. This property should allow
us to simplify the network because the gated units used in LSTM are
not necessary anymore for alleviating the difficulty of training. We
experimentally show later in the next section that a simple ERNN
with much fewer parameters can compete with LSTM.

3.2. Proposed speech enhancement method using ERNN

We propose a speech enhancement method based on a causal ERNN.
The proposed method estimates the T-F mask for the current time
frame G, by ERNN whose input is based only on the current input
feature v and the hidden state vector h,_1 as

Gr=0c(Wh, +b),  h; =ERNNZ(¢r,hr_1), (11

where W and b are the matrix and bias of the fully-connected layer,
respectively, o(+) is the sigmoid function, and ERNNZ(-, -) is the
function iterating Eq. (I0) K times from an initial value £ ©) using
the nonlinear function .%.

Since the expressive power of ERNN is determined by the non-
linear function .%, the performance and the degree of computational
requirements can be traded by appropriately designing it. For real-
time applications, we aim to reduce the number of parameters of
the system while maintaining the performance so that the proposed
method can compete with the standard LSTM-based methods. As

Table 1. Network architectures for the experiment.

Layer [ Type [ Size (activation)
LSTM2/BLSTM?2

Layer] | LSTM/BLSTM | 257 — Ny

Layer2 | LSTM/BLSTM | Ng — Nj

output Fully Ng — 257 (sigmoid)

ERNN
Layerl ERNN 257 — Ny
output Fully Ny — 257 (sigmoid)

the first step of the investigation of the proposed method, we con-
sider a fully-connected DNN with the ReLU activation as illustrated
in Fig. 3] because it is easy to adjust the number of parameters by
changing the size of the fully-connected layers. As the DNN .7 is
common for all % in the iteration of Eq. (I0), the number of parame-
ters is that of .# plus K (comes from the scalers T](O), e ,n(Kfl)).
Note that this choice of .% is merely an example, and it should be
possible to design a better network consisting of fewer parameters.

4. EXPERIMENT

In order to confirm the effectiveness of the proposed method, the
performance of speech enhancement was investigated by comparing
with LSTM-based methods as the baselines. We conducted two
experiments. As the first experiment, we compared the performance
and the number of parameters of the proposed and conventional
methods by selecting the same number of the cell units. In the sec-
ond experiment, the number of parameters of the proposed method
was decreased to see how the performance varies for smaller DNN.
Ourimplementation of these experiments is openly available on-
ling

4.1. Experimental condition

4.1.1. Dataset

We utilized the VoiceBank-DEMAND dataset constructed by Valen-
tini et al. [25] which is openly availableﬂ and frequently used in the
literature of DNN-based speech enhancement. It consists of train set
and test set which contain noisy mixtures and clean speech signals,
respectively, i.e., noise and speech signals were already mixed by
the authors [25]]. They consist of 28 and 2 speakers (11572 and 824
utterances) [26] which are contaminated by 10 (DEMAND, speech-
shaped noise, and babble) and 5 types of noise (DEMAND) [27],
respectively. All data were downsampled from 48 kHz to 16 kHz.

4.1.2. DNN architecture, loss function and training setup

The parameters of STFT were the 512 points (32 ms) Hann window,
256 points time-shifting, and 512 points FFT length, and the inverse
STFT was implemented by its canonical dual [28]]. In the proposed
method, DNN .# in ERNN was that illustrated in Fig. [B] and the
iteration number K was varied as 1/3/5. The size of hidden vector
Ng and Ny, were varied as 512/256 and 512/256/128/64/32, respec-
tively. For the baseline methods, two-layered LSTM and BLSTM,
which are popular and have been successfully applied to speech en-
hancement [2]], consisting of 512/256 cells were used as summarized
in Table|l] For the input feature, log-magnitude spectrogram,

Vo,r = In([ X, ), (12)

'https://github.com/dtakel336/ERNN-for—-speech-e
nhancement
“http://dx.doi.org/10.7488/ds/1356


https://github.com/dtake1336/ERNN-for-speech-enhancement
https://github.com/dtake1336/ERNN-for-speech-enhancement
http://dx.doi.org/10.7488/ds/1356

Table 2. Results for comparison (Vs = 256)
DNN | N5 | Ny, [K|Params.| PESQ | CSIG |CBAK |COVL

Table 4. Results of varying N, (Ns = 256)
DNN | Ns | Ny, |K|Params. | PESQ | CSIG |CBAK |COVL

1 242 | 3,57 | 2.58 | 298 1 230 | 3.34 | 2.52 | 2.80
ERNN 256 z 329k | 249 | 3.58 | 2.62 | 3.02 32 [3] 215k | 239 | 3.54 | 257 | 2.95
256 5 243 | 356 | 2.58 | 298 5] 232 | 345 | 345 | 2.87
BLSTM2 | _|276M | 2.50 | 3.65 | 2.62 | 3.06 1 243 | 3.60 | 2.59 | 3.00
LSTM2 1.12M | 234 | 349 | 255 | 2.90 ERNN |256| 64 [3| 231k | 240 | 356 | 2.58 | 2.97
5] 2.37 | 3.57 | 2.56 | 2.96
Table 3. Results for comparison (Vg = 512) 1] 245 | 3.64 | 261 | 3.03
128 3| 264k | 2.40 | 3.57 | 2.58 | 2.97
DNN | Ns | Ny |K|Params.| PESQ | CSIG |CBAK |COVL 5] 2.49 | 3.71 | 2.63 | 3.09
1 243 | 3.65 | 2.60 | 3.03
ERNN 512(3] 1.05M [ 243 | 3.60 | 2.59 | 3.00 )
512 ? 241 3.67 258 3.02 Table 5. Results of varying Nh (NS = 512)
BLSTM2 _ | _[972M | 2.53 | 3.67 | 2.65 | 3.08 DNN | N, | Ny, [K|Params.| PESQ | CSIG [CBAK|[COVL
LSTM2 3.81M | 2.45 3.63 | 2.61 3.03 1 235 | 343 | 254 | 2.87
32 z 560k | 2.40 | 3.58 | 2.58 | 2.98
was used for all networks, where | - | denotes the absolute value. As 3 241 | 362 | 258 | 3.00
. . . . . 1 244 1 356 | 2.59 | 298
an activation function of the output layer, the sigmoid function was 64 (31 503k 247 1360 T 261 300
used for limiting the values within the range of O to 1. 5 2'45 3.63 2.61 3'03
For the loss function in the training, the mean absolute error ERNN 512 ; 2’ 19 3'7 0 2' %) 3' 03
measured in the time d;mam was used: 128371 658k 236 13352 256 293
1 . 5] 2.52 | 3.69 | 2.64 | 3.09
jMAE(e) = T ; ! St — ISTFT(MB(\I/) © X)t ’a (13) L 2352 3.68 2.63 3.09
N 256(3| 790k | 2.48 | 3.75 | 2.63 | 3.10
where © is the element-wise multiplication, and iISTFT(-) denotes 5| 2.54 | 3.74 | 2.65 | 3.13

the inverse STFT. Each DNN was trained 200 epochs where each
epoch contained 11 572 utterances. A one-second-long segment was
randomly picked up for each utterance, and mini-batch size was 16.
Adam optimizer [29] was utilized with a fixed learning rate 0.0001.

The performance of speech enhancement was measured by
PESQ [30] and three measures CSIG, CBAK, and COVL [31]
which are the popular predictor of the mean opinion score (MOS)
of the signal distortion, the background noise interference, and the
overall effect, respectively.

4.2. Results

The results for comparison are summarized in Tables2|and 3] where
the cell sizes were 256 and 512, respectively. As well known in
the speech enhancement literature, BLSTM performed better than
LSTM because BLSTM is non-causal and can use the information
from the future, while LSTM is causal and can only use the past
information. Since BLSTM cannot be utilized for real-time appli-
cations, its scores are merely a reference, and LSTM is the direct
competitor of the proposed method. Comparing with LSTM, the
proposed method obtained almost the same performance in every sit-
uation. For some situations, the proposed method also obtained the
similar performance compared to BLSTM even though the proposed
method is causal and contains about 1/9 parameters. This should be
because ERNN was able to successfully learn the long-term depen-
dencies of the speech signals.

Since our aim is to construct a network with fewer parame-
ters, the number of the parameters of the proposed method was re-
duced by changing the dimension of the linear layer Ny, (see Fig.[3).
The results are summarized in Tables [ and 5] where the result for
Ng = Ny can be found in Tables 2] and [3| As a general tendency,
reducing the number of parameters gradually degrades the perfor-
mance. However, the amount of degradation is not so significant,
which indicates that the proposed method can reduce the computa-
tional requirement without losing the performance much. In terms of

the number of iteration K, more iteration tends to slightly improve
the performance. The proposed method can reduce the computa-
tional requirement by reducing K, where K = 1 means that the
network . is applied only once at each time frame.

Note that, by comparing the best scores in Table [4 with LSTM
in Table |3| the proposed method outperformed LSTM with less
than 1/14 parameters. It is also comparable to BLSTM in Table 3]
with less than 1/36 parameters and BLSTM in Table [2] with around
1/10 parameters. Again, BLSTM cannot perform in real time as it
is non-causal, and thus the proposed method should be compared
with LSTM. While LSTM lost noticeable amount of performance
by reducing the parameters as shown in Tables [2] and [3] the pro-
posed method can reduce the number of parameters with moderate
amount of degradation of the performance as in the tables. There-
fore, we confirmed the effectiveness of the proposed method in
real-time speech enhancement as it can be performed by much lower
computational cost compared to the standard LSTM networks.

5. CONCLUSIONS

In this paper, the causal DNN-based speech enhancement method us-
ing ERNN was proposed for real-time applications. By using ERNN,
the number of parameters can be decreased thanks to its ability of
learning the long-term dependencies without the vanishing gradient
problem. The experimental results indicated that, while the standard
LSTM lost the performance by reducing the number of parameters,
the proposed method can effectively trade the performance and com-
putational requirement which is preferable for performing speech
enhancement on resource-limited devices. As this paper only con-
sidered a simple fully-connected DNN with ReLU activation as an
example for ERNN, our future works include investigation of a bet-
ter network performing well with less number of parameters.
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