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ABSTRACT

In this paper, we address a convolutive blind source separation (BSS)
problem and propose a new extended framework of FastMNMF by
introducing prior information for joint diagonalization of the spa-
tial covariance matrix model. Recently, FastMNMF has been pro-
posed as a fast version of multichannel nonnegative matrix factor-
ization under the assumption that the spatial covariance matrices of
multiple sources can be jointly diagonalized. However, its source-
separation performance was not improved and the physical mean-
ing of the joint-diagonalization process was unclear. To resolve
these problems, we first reveal a close relationship between the joint-
diagonalization process and the demixing system used in indepen-
dent low-rank matrix analysis (ILRMA). Next, motivated by this
fact, we propose a new regularized FastMNMF supported by IL-
RMA and derive convergence-guaranteed parameter update rules.
From BSS experiments, we show that the proposed method out-
performs the conventional FastMNMEF in source-separation accuracy
with almost the same computation time.

Index Terms— blind source separation, spatial covariance
model, joint diagonalization

1. INTRODUCTION

Blind source separation (BSS) [1] is a technique that separates
sound sources from observed mixtures without any prior infor-
mation about the sources or mixing system. For a determined
or overdetermined situation, when the sources are point sources
and reverberation is sufficiently short (referred to as the rank-1
spatial model), frequency-domain independent component analy-
sis [2} 3], independent vector analysis [4} 15} |6, and independent
low-rank matrix analysis (ILRMA) [7, |8] have been proposed. In
particular, ILRMA is a BSS technique assuming statistical inde-
pendence between the sources and the low-rank structure of source
spectrograms, and provides high-accuracy separation with a short
computation time. However, the rank-1 spatial model cannot hold in
the case of spatially spread sources or strong reverberation.
Multichannel nonnegative matrix factorization (MNMF) [9, [10]
is an extension of nonnegative matrix factorization (NMF) [11] to
the multichannel case, which estimates the spatial covariance matri-
ces of each source. MNMF employs full-rank spatial covariance
matrices [[12] and this model can simulate situations where, e.g.,
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the reverberation is longer than the length of time-frequency anal-
ysis. However, it has been reported that MNMF has a huge com-
putational cost and its performance strongly depends on the initial
values of parameters [7]. To accelerate the parameter estimation,
Ito and Nakatani have proposed FastMNMF [13], which is an im-
proved algorithm of MNMEF under the assumption of jointly diago-
nalizable spatial covariance matrices. It has been reported that, al-
though the computation time of the algorithm is greatly reduced, its
source-separation performance is still sensitive to the parameter ini-
tialization and not always improved (indeed, it is almost the same as
that of the original MNMF) [14]. In addition, the physical meaning
of the joint-diagonalization process in FastMNMF is unclear; con-
sequently, prior information cannot be introduced into the parameter
optimization to achieve further improvement.

To resolve the above-mentioned problems, we provide three
contributions in this paper, namely, a new FastMNMF framework
with physically reasonable prior information, its parameter opti-
mization algorithm based on a new type of coordinate descent,
and an experimental evaluation of the proposed FastMNME. First,
we reveal that the joint-diagonalization process in FastMNMF is
closely related to the demixing system used in ILRMA. Motivated
by this fact, we propose a new regularized FastMNMF with the
prior distribution of the joint-diagonalization matrix supported by
ILRMA. Next, we derive parameter update rules on the basis of
vectorwise coordinate descent (VCD) [15] that guarantees a mono-
tonic nonincrease in the cost function. Finally, we conduct BSS
experiments under reverberant conditions, showing that the pro-
posed FastMNMEF outperforms the conventional FastMNMF as well
as ILRMA in source-separation accuracy while maintaining similar
computational efficiency.

2. CONVENTIONAL METHODS

2.1. Formulation

Let the numbers of sources and channels be N and M, respec-
tively. The short-time Fourier transforms (STFTs) of the multichan-
nel source, the observed signal, and the separated signal are defined
as

8ij = (Siji1s-- s si5,n) €CN, M

xij = (Tij1, ..., Tijm)' € CY, 2
T N

Yi; = (Yij, .. yijn) € CY, 3)

where © = 1,...,1,5 = 1,...,J;n = 1,...,N, and m =
1,..., M, are the indices of the frequency bins, time frames,



sources, and channels, respectively, and - denotes the transpose.

2.2. ILRMA [7]

When the window size in an STFT is sufficiently longer than the
impulse responses between the sources and the microphones and the
sources are point sources, we can represent the observed signal as

zi; = A;Sij, 4

where A; = (a@;1,...,a;N) € CM*N jsa frequency-wise mixing
matrix and a;,, is the steering vector for the nth source. If M = N
and the mixing matrix A; is invertible, we can estimate the separated
signal as

vi; = Wiz, (@)

where W; = (wi1,...,win)" = A;' is the demixing matrix
and - denotes the Hermitian transpose. ILRMA assumes that the
separated signals ¥;;,» (n = 1, ..., N) are statistically independent
of each other, i.e.,

p(yij) = Hp(yij,n)7 (6)

n

and each y;;,, follows the complex Gaussian distribution whose
mean is zero and variance is 7;;,». The source model 7, ,, is a spec-
trogram of the nth source at the ith frequency and jth time frame,
having a low-rank spectral structure represented by NMF. From (3)
and (6)) the negative log-likelihood of the observed signal, which is
a cost function to be minimized, is given by

ij,m

Ho g2
L1 = Z {w +log rij,n] —2JZlog |det W[, (7)

0,3,m

where = denotes equality up to a constant. Since tl wr.t. the
source model parameter 7;;,,, is the Itakura—Saito-divergence-based
cost function, the parameter is updated by the auxiliary function
technique [16], similarly to Itakura—Saito NMF [17]. Regarding the
demixing matrix W, the cost function (7)) is the sum of the quadratic
form of w;, and the negative log-determinant of W;. This type
of cost function can be minimized by iterative projection (IP) [18],
which guarantees a monotonic nonincrease in the cost function. The
demixing matrix W; can be optimized so as to make separated sig-
nals mutually independent. Details of these update rules are de-
scribed in [7]].

2.3. FastMNMF [13,[19]

In convolutive BSS, the frequency-domain instantaneous mixing
process is translated into a model using a rank-1 spatial covariance
matrix amazﬂn for each source. In this case, the observed signal x;;
is modeled as follows:

xi; ~ N(0, Z rij,nama?n), 8)

A rank-1 spatial covariance model, however, is inappropriate when
reverberation is strong or the sources are not regarded as point
sources. In the MNMF model, it is assumed that a spatial covari-
ance matrix is full rank and denoted as G, instead of the rank-1
spatial model @, at,. Under this assumption, the observed signal is
represented as

Tij NN(07ZUz‘j,nGin)7 (9)

where 05, is a source spectrogram. It is also assumed that o .,
has a low-rank structure, i.e.,

Tijn = Ztikvkakn7 (10)
k

where k = 1,..., K is the index of the NMF basis, and ¢;x € R>¢
and vi; € R represent the ith frequency component of the kth
basis and the jth time-frame activation component of the kth basis,
respectively. In addition, zx, € R>¢ is a latent variable that indi-
cates whether the kth basis belongs to the nth source. In MNMF, we
can estimate Gn, tik, Uk;, and zx, by minimizing the negative log-
likelihood of @;;, but this consumes a huge amount of computation.
To reduce the computational cost of the update algorithm,
FastMNMF additionally assumes that the spatial covariance matri-
ces Gi1,...,G;n are jointly diagonalizable by Q; = (qi1, ...,

qi M)H as

Q:GuQ" = Ga
: (1)
QlGlNQ’lL—' = giN?

where G;,, is a diagonal matrix. From (@) and (TI), the negative
log-likelihood of the observed signal is given by

C ‘qz_'m‘,'c’bj|2 ~ :|
;C == = +10 ik Vg2 inm
—2J ) log|det Qi, (12)

where Ginm is the mth diagonal element of G;,,. Similarly to IL-
RMA, Q; in @ can be optimized via IP and the remaining pa-
rameters are updated by using the auxiliary function technique [19].
After the update, we can estimate the separated signals via the mul-
tichannel Wiener filter.

3. PROPOSED METHOD

3.1. Motivation and strategy

The joint-diagonalization matrix Q; of FastMNMF makes the ob-
served signal x;; uncorrelated because x;; follows the multivariate
complex Gaussian distribution. When we consider the rank-1 spa-
tial model, the demixing matrix W; in ILRMA is regarded as one
of the decorrelation matrices. From the definition of W, the spatial
covariance matrix a;, a'{'n multiplied by the demixing matrix W; on
both sides becomes

H H H
Wiaina 3z W;" = eie;

13)

H H H
WiaiNaiNWi = €eney,

where e,, denotes the one-hot vector in which the nth element equals
unity and the others are zero, and consequently e,e'! is a diag-
onal matrix. Thus, this demixing matrix W; is one of the joint-
diagonalization matrices in the rank-1 spatial model. On the other
hand, when the spatial model is not rank-1, such as when the sources
are still point sources but the reverberation is strong, the full-rank
spatial covariance matrix G;,, is defined as the sum of the covari-
ances corresponding to the rank-1 part and the reverberation part
Orev \Ill [20]’

Gin = aina;—‘n + UTEU\Pi7 (14)



and the demixing matrix W; can also jointly diagonalize the first
term of the right-hand side of (T4), as in (I3). Therefore, the joint-
diagonalization matrix ; can be approximated by W; estimated in
ILRMA. This fact motivates us to propose a new algorithm to find
the optimal @Q; around W; that jointly diagonalizes rank-1 spatial
covariance matrices. Note that, although principal component anal-
ysis (PCA) is also a typical method of decorrelation, the rotation
matrix of PCA only diagonalizes the spatial covariance matrix of the
observed signal x;;, which is the weighted sum of the spatial co-
variance matrix G';,, of each source, but does not jointly diagonalize
each one. Thus, PCA is not appropriate for the joint diagonalization.

In this paper, we only consider a determined situation (M = N).
If M < N, ie., underdetermined situations, the demixing matrix
W, cannot strictly diagonalize the first term of the right-hand side of
(T4). However, we can still apply this method in this case because the
demixing matrix W; leads to the separated signals being indepen-
dent of each other to some extent, i.e., W; G, W} (n=1,...,N)
is close to a diagonal matrix.

3.2. Proposed regularized FastMNMF

From the discussion in Sec. @ we can introduce the prior distribu-
tion of the joint-diagonalization matrix Q; into (12)), where the mean
of the distribution is set to the demixing matrix W; of ILRMA, as

Gim ~ N (Gim, (JAim) ™" Enr), (15)
Gim = Wim, (16)
where \;n, is the weight parameter, E/ is the M x M identity ma-
trix, and J is used to remove the dependence on the total number

of time frames. Introduction of the prior distribution (15} is equiva-
lent to the imposition of the regularization term J >, . Xim||@im —

Gim||? on . Hence, the negative log-posterior of the proposed
regularized FastMNMEF is obtained as

‘Réz{z

1,7,Mm

|qzl'_£nwij |2

n,k tikvkj angznm

+ log Z tikvkaknginm:|
n,k

—2J ) log|det Q|+ J > Ximllgim — Gim|*. (17)

First, we derive update rules of the joint-diagonalization matrix
Q.. We gather only the terms depending on g, in (17) and rewrite
the cost function as

Lr = JZ ab DimQim — 2JZlog | det Q|

where
J}UCBZ

+ XNimEr. (19)

1

Equation (T8) is the sum of the quadratic form of @i, the negative
log-determinant of Q;, and the linear terms of g;m. This type of
problem cannot be solved by IP because of the existence of the linear
terms. Instead of IP, VCD, which we previously proposed [15[], can
minimize (I8) w.r.t. g;m, guaranteeing a monotonic nonincrease in
the cost function. We expand the term det Q; in (I8) using B; =
(bi1, ..., bin), which is the adjugate matrix of Q;, defined as

[Bi}nwn’ = (_1)m+m Qvi,m"ma (20)

.k LikUkj Zkn Jinm

where [B;],,m/ is the (m, m’)th element of B; and Qv@m,m is the
(m', m)th minor determinant of @;. From a property of cofactor
expansion, we obtain |det Q;|* = |qt bim|> = @it bimb, qim.
Note that by, is independent of g, from its definition [21]. There-
fore, the derivative of (T8) is obtained as

Togh, ~ Dt = G g~ i 2D

where -* denotes the complex conjugate. By solving the equation
OLr/9q;,, = 0, we describe the update rules of g;,, based on VCD
as follows:

Wim — (QiDim) ‘em, (22)

im < NimDy Gim, (23)

Tim = Uney Dim Wim, (24)

Fim < Uity Dim Gim, (25)
% + Qim, (if Pim = 0)

Qim ;:;:L 1+ é;ﬁ:"g 71} Wim +Qim (otherwise). (26)

Next, we describe update rules of the other parameters ¢;x, vij,
Zkn, and Ginm. The cost function Ly in (I7) w.rt. tik, Vkj, Zkn,
and Ginm is the same as Lr in @) because the regularization term
is a function of g;», and independent of these parameters. Then, the
update rules are given in [19] as

2 lgf @420k 2kninm
b et G (s s gt Vit 5250t Gin )2 @7
ik ik Z VkjZknJinm ’
T 3Tt ot gt VR 2t it m
S lai @512 tik 2n Ginm ,
G (3ot ot Cig/ Vil 52 Tin m)
Ukj 4 Ukj : 5 28
kj kg 3. tikZknJinm ’ (28)
G D0 ot bt Vat 2! Tt m
o lgf @i 12tk vk;Ginm 2
0 (gt it ik Vi 2k ! Gind m)
Zkn 2 : z - 29
kn kn Z tikVkjGinm ’ (29)
1,7,m Zkl)n/ tiklvk’jzk’n’gin’m
S lgfl ®ij|2tinvr) zkn :
_ ~ ok (gt Ui/ Vit 2k ! Tint m)

Z tikVkjZkn

gk Ek/,n/ tik’vk’jzk"n’g'in’nL

These also use the auxiliary function technique, which guarantees a
monotonic nonincrease in the cost function. When \;,,, = 0, the
update rules (22) to (30) are the same as those of the conventional
FastMNMF.

3.3. Scheduling of weight parameter of regularizer

The demixing matrix W; is not an accurate solution of FastMNMF
because we cannot ignore the second term of the right-hand side of
(T4) in the full-rank spatial covariance case. Therefore, the weight
parameter of the regularizer, Aim, should become smaller in the lat-
ter part of the iterations and this annealing-like approach improves
the separation accuracy.

4. EXPERIMENT

4.1. Experimental conditions

We confirmed the efficacy of the proposed method by conducting
music source separation experiments. We compared six methods:



Table 1. Dry sources used in experiment

Part name Source (1/2)
Music 1 | Midrange/Melody 2 Piano/Flute
Music 2 | Melody 1/Melody 2 Oboe/Flute
Music 3 | Melody 2/Midrange | Violin/Harpsichord
Music 4 Melody 2/Bass Violin/Cello
Music 5 Melody 1/Bass Oboe/Cello
Music 6 | Melody 2/Melody 1 Violin/Trumpet
Music 7 Bass/Melody 2 Bassoon/Flute
Music 8 Bass/Melody 1 Bassoon/Trumpet
(@) Sourcel T [ -Source2 (b) Sourcel T Ty
40y 40°ge

P5.66 cm? Prszemy

Fig. 1. Spatial arrangements of sources and microphones.

ILRMA [7], the conventional FastMNMF with E»/ initialization for
Q; (FastMNMF w/ E); init.) [13]], the conventional FastMNMF
with PCA initialization for Q; (FastMNMF w/ PCA init.) [19],
FastMNMF with W; initialization for Q; (FastMNMF w/ W;
init.) as a reference, the proposed regularized FastMNMF with-
out weight scheduling (proposed regularized FastMNMF 1),
and the proposed regularized FastMNMF with weight scheduling
(proposed regularized FastMNMF 2). We used monaural dry
music sources of four melody parts [22]. Eight combinations of
instruments with different melody parts were selected as shown in
Table [T To simulate reverberant mixing, the two-channel mixed
signals were produced by convoluting the impulse response E2A
(Teo = 300ms) in the RWCP database [23]. Fig. [I] shows the
recording conditions of E2A used in our experiments. In these
mixtures, the input signal-to-noise ratio was 0 dB. The sampling
frequency was 16 kHz and an STFT was performed using a 64 ms
Hamming window with a 16 ms shift (750 is longer than the window
length, i.e., the spatial covariance matrices are full rank). The total
number of bases in the low-rank source model was K = 20. The
initializations of the source model parameters (£;x, Vk;, 2kn) and the
spatial covariance matrix G, in FastMNMF were random values
and the identity matrix, respectively. The initialization of @Q; in the
proposed methods was the identity matrix. The weight parameter
of the proposed regularized FastMNMEF 1 was set to 10™7 and that
of the proposed regularized FastMNMF 2 in the [th iteration was
set t0 Aim (1) = Ao(Aena/Mo)"/E, where L is the total number of
iterations, Ao is 107°, and Aeng is 107 3. The number of iterations
in the proposed and conventional methods was 300 and that of IL-
RMA conducted before the proposed methods was 50. We used the
source-to-distortion ratio (SDR) improvement [24] to evaluate the
total separation performance.

4.2. Experimental results for source-separation accuracy

Fig. |Z|shows the average SDR improvements over the recording con-
ditions, the source pairs, and 10-trial initialization. Compared with
ILRMA, conventional FastMNMF w/ Ey; init. and FastMNMF w/
PCA init. provide better SDR improvements to some extent. The
SDR improvement of FastMNMF w/ W; init. is slightly lower than
those of the conventional methods. On the other hand, the proposed
regularized FastMNMF 1 and regularized FastMNMF 2 markedly
outperform the conventional FastMNMF methods and ILRMA. This
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Fig. 2. Resultant SDR improvement for each method.
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Fig. 3. Average computation time per iteration for “Music 1”.

suggests that the initialization of Q; with W; is not sufficient, show-
ing the importance of introducing the new prior distribution for Q;.

In addition, the proposed regularized FastMNMEF 2 outperforms
the proposed regularized FastMNMF 1. This is because the joint-
diagonalization matrix Q; of the proposed regularized FastMNMF 1
is exceedingly restricted by the demixing matrix W; in ILRMA in
the latter part of the iterations, which does not provide the best sep-
aration result as described in Sec.[33]

4.3. Experimental results for computation time

We measured the average computation time per iteration for “Mu-
sic 1”. We compared three methods: the conventional MNMF [10],
the conventional FastMNMF w/ E init., and the proposed regu-
larized FastMNMF 2. Fig. |§| shows that the proposed regularized
FastMNMF and the conventional FastMNMF are much faster than
the conventional MNMF. The proposed FastMNMF 2 is slightly
slower than the conventional FastMNMF because of the VCD up-
date (22) to (28], but the difference is not significant.

5. CONCLUSION

In this paper, we first revealed that the joint-diagonalization matrix
Q; in FastMNMF is closely related to the demixing matrix W; in
ILRMA. Next, motivated by this fact, we proposed a new regu-
larized FastMNMEF that includes the prior distribution of Q; aug-
mented with W;. Also, we derived the parameter update rules of
Q; on the basis of VCD that guarantees a monotonic nonincrease
in the cost function. From the source-separation experiments, we
showed that the proposed method outperformed the conventional
FastMNMF methods in SDR improvement with almost the same
computation time.
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