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ABSTRACT

In this study, we define the identity of the singer with two in-
dependent concepts – timbre and singing style – and propose
a multi-singer singing synthesis system that can model them
separately. To this end, we extend our single-singer model
into a multi-singer model in the following ways: first, we de-
sign a singer identity encoder that can adequately reflect the
identity of a singer. Second, we use encoded singer identity
to condition the two independent decoders that model tim-
bre and singing style, respectively. Through a user study with
the listening tests, we experimentally verify that the proposed
framework is capable of generating a natural singing voice of
high quality while independently controlling the timbre and
singing style. Also, by using the method of changing singing
styles while fixing the timbre, we suggest that our proposed
network can produce a more expressive singing voice.

Index Terms— Singing voice synthesis, Singer identity,
Timbre, Singing style

1. INTRODUCTION

Singing voice synthesis (SVS) is a task that generates a nat-
ural singing voice from given sheet music and lyrics infor-
mation. SVS is similar to the text-to-speech (TTS) system in
terms of synthesizing natural speech from text information
but differs in that it requires controllability of the duration
and pitch of each syllable. Similar to the development of TTS
[1, 2], the methodology based on the deep neural network has
recently been studied in SVS, and the performance is compa-
rable with the existing concatenative method [3].

After the successful development of single-singer model,
researches have been conducted to extend the existing model
to a multi-singer system. The multi-singer SVS system should
not only produce natural pronunciation and pitch contour but
also suitably reflect the identity of a particular singer. To
achieve this, methods for adding conditional inputs reflecting
the singer’s identity to the network have been proposed [4, 5].

In this study, we break down a singer’s identity into two
independent factors: timbre and singing style. A timbre is de-
fined as a factor that allows us to distinguish the difference
between the two voices even when the singers are singing

Fig. 1. Proposed method to reflect singer identity in multi-
singer SVS system

with the same pitch and pronunciation, and it is generally
known that they are related to singers’ formant frequency [6,
7]. Meanwhile, a singing style can be defined as an expression
of a singer, hence the natural realization of a pitch sequence
from sheet music, including singing skills such as legato, vi-
brato, and so on. The expressive SVS system should be able to
synthesize the two elements effectively, and it becomes more
powerful if the user can control them independently.

To this end, we propose a conditioning method that can
model timbre and singing styles, respectively, while extend-
ing our existing single-singer SVS system [8] to a multi-
singer system. First, we add a singer identity encoder to
the baseline model to capture the singer’s global identity.
Then we independently condition the encoded singer iden-
tity information to the two decoders responsible for formant
frequency and pitch contour so that timbre and singing style
can be reflected as shown in Fig. 1. Our proposed network
can independently control the two identities we define, so
cross-generation combining different speakers’ timbre and
singing styles is also possible. Using this, we generated a
singing voice that reflects the timbre or singing style of a
particular singer and conducted a listening test, confirming
that the network can generate a high-quality singing voice
while actually reflecting each identity.

The contribution of this paper is as follows: 1) We propose
a multi-singer SVS system that produces a natural singing
voice. 2) We propose a new perspective on the identity of the
singer – timbre and singing style – and propose an indepen-
dent conditioning method that could model it effectively.
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Fig. 2. The overview of the proposed multi-singer SVS system.

2. RELATED WORKS

2.1. Single-singer SVS system

The concatenative method, one of the typical SVS systems
such as [9, 10, 11], synthesizes the singing voice for a given
query based on the pre-recorded actual singing data. This
method has the advantage of high sound quality because it
uses the human voice directly, but it has a limitation in that it
requires an extensive data set every time a new system is de-
signed. For a more flexible system, parametric methods have
been proposed that directly predict the parameters that make
up the singing voice [12, 13, 3]. This method overcomes the
disadvantages of the concatenative method but has a limita-
tion that depends on the performance of the vocoder itself.
Recently, researches are being conducted to generate spectro-
grams using fully end-to-end methods directly [8], or designs
of vocoders as trainable neural networks are also in progress
[5]. In this study, we experimented based on the end-to-end
network that directly generates a linear spectrogram.

2.2. Multi-singer SVS system

Researches to extend the SVS system to the multi-singer sys-
tem has been conducted relatively recently. [4] proposes a
method of expressing each singer’s identity by one-hot em-
bedding. This method is straightforward and simple, but has
the limitation of requiring re-training each time to add a new
singer. A method of learning trainable embedding directly
from the singer’s singing query for a more general singer
identity is proposed in [2]. Our proposed method is different
from the previous works in that it directly maps the singing
query into an embedding, and defines the singer identity as
two independent factors, timbre and singing style.

3. PROPOSED SYSTEM

We propose a multi-singer SVS system that can model timbre
and singing styles independently. We designed the network

with [8] as the baseline and extended the existing model to
the multi-singer model by adding 1) singer identity encoder
and 2) timbre/singing style conditioning method. As shown in
Fig. 2, our model uses text T1:L, pitch P1:L, mel-spectrograms
M0:L−1, and a singing voice query Q as inputs. Each input
is encoded via an encoder, then are decoded with formant
mask decoder and pitch skeleton decoder. The formant mask
decoder generates a pronunciation and timbre-related feature
FM from encoded text ET and query EQ. The pitch skele-
ton decoder generates pitch and style-related feature PS from
encoded mel-spectrogram EM , pitch EP and query EQ. Es-
timated mel-spectrograms M̂1:L; the result of element-wise
multiplication of FM and PS, are converted to estimated
linear spectrograms Ŝ1:L′ via a super-resolution network. Fi-
nally, to create a linear spectrogram that is more realistic, we
applied adversarial training and added a discriminator to this
end. Please refer to [8] for more detailed information on each
module of the network. The summary of the generation pro-
cess of the entire network is as follows:

Ŝ = SR(M̂) = SR(FM(T,Q)� PS(M,P,Q)). (1)

3.1. Singer identity encoder

Expanding the single-singer model to the multi-singer model
requires an additional input about singer identity information.
To achieve this, we designed a singer identity encoder that
directly maps the singer’s singing voice into an embedding
vector. The network structure is shown in Fig. 3. A singing
query is passed to two 1d-convolutional layers and an aver-
age time pooling layer to capture global time-invariant char-
acteristics while eliminating the changes over time. Then, the
pooled embedding is converted into a 256-dimensional em-
bedding vector through the dense layer and tiled to match the
number of time frames of the features. Finally, it is used as
a conditioning embedding vector for a pitch skeleton decoder
and a formant mask decoder, respectively.



Fig. 3. Singer identity encoder structure and conditioning
method. HWC, HWNC denotes highwav causal/non-
causal covolutional module proposed in [14], and
Conv1d,Dense, relu, sigmoid denotes 1d-convolutional
layer, fully connected layer, rectifier linear unit, and sigmoid
activation unit, respectively.

3.2. Disentangling timbre & singing style

In this section, we will provide details of our conditioning
method to model timbre and singing styles separately. Our
baseline network generates a mel-spectrogram by the multi-
plication of two different features, formant mask and pitch
skeleton. Formant mask is responsible for regulating formant
frequency to model corresponding pronunciation information
from the input text, while pitch skeleton plays a role in creat-
ing natural pitch contours from input pitch. We focused that
singer identity embedding could be reflected in each of these
features in different ways. In other words, we assumed that
singer identity embedding had to be conditioned on the for-
mant mask decoder to control the modality of the timbre, and
to control the singing style, it had to be conditioned on the
pitch skeleton decoder that forms the shape of the pitch con-
tour. Based on this assumption, we used a method of condi-
tioning singer identity embedding independently of each of
the two decoders. We used the global conditioning method
proposed in [15], and the specific formula is as follows.

z(x, c) = σ(W1 ∗ x+ V1 ∗ c)� relu(W2 ∗ x+ V2 ∗ c) (2)

where x is a target to be conditioned, c is a condition vector,
and W∗ ∗ x and V∗ ∗ c are 1d-convolution.

4. EXPERIMENT

4.1. Dataset and preprocessing

For training, we use 255 songs of a singing voice, consist-
ing of a total of 15 singers. Three inputs (text, pitch, and
mel-spectrogram) were extracted from the lyrics text, midi,

and audio data, respectively. Query singing voice for singer
identity embedding was randomly chosen from other singing
sources of that singer. One of each singer’s recorded songs
was used as test data, and the rest were used to train the net-
work.

We preprocessed the training data in the same way as [8]
for all input features except the singing query for singer iden-
tity embedding. The sampling rate was set to 22,050Hz. The
preprocessing step for the singing query is as follows. First,
we randomly selected about the 12-second section from the
singer’s singing voice source. Then, we set both the window
size and hop length to 1024 and converted the singing voice
waveform into a mel-spectrogram of 80 dimensions and 256
frames and used it as the singing query.

4.2. Training & inference

We trained the network in the same way as proposed by [8],
except to set different speaker samples evenly distributed in
each mini-batch. The inference was also conducted in the
same way as in the previous study, but for tests to show that
the timbre and singing style can be controlled separately, we
generated test samples through cross-generation, which gen-
erates a pitch skeleton and a formant mask from different
speaker embeddings, respectively 1.

4.3. Analysis on generated spectrogram

We compared the generated spectrogram by a different
speaker for the same pitch and text to see the effect of the
speaker identity embedding. As shown in Fig. 4, each spec-
trogram has a similar overall shape but includes partial dif-
ferences. In the case of a formant mask, female vocals have
vigorous intensity in high-frequency areas, while the male’s
corresponding frequency area is shifting down. This is in
line with the fact that males generally have lower formant
frequency even in the same-pitched condition. Even with the
same gender, we can see that the shape of the formant mask
is different, and from this, we have confirmed that the speaker
embedding appropriately reflects the timbre of each singer.
Likewise, pitch skeleton differs depending on the speaker,
where it is spotted at the position of the onset/offset, the slope
near it, the intensity of vibrato, and the shape of the unvoiced
area. From this, we confirm that the singer identity embedding
affects the style change of pitch skeleton effectively. Note that
despite conditioning with identical embeddings through time,
changes in the style of pitch skeletons over time have been
observed. We argue that our network generates singing voice
in an auto-regressive way so that it could reflect the style
differences over the time axis of different singers.

We were also able to observe a few changes as we interpo-
late two different singer identity embeddings from female to
male vocalist. For example, we found that the high-frequency

1audio samples available at https://juheo.github.io/DTS

https://juheo.github.io/DTS


Fig. 4. Generated mel-spectrogram with various singer em-
bedding (top) and interpolated singer embedding (bottom).
FM , PS, M̂ denotes formant mask, pitch skeleton, and esti-
mated mel-spectrogram, respectively.

area of the formant mask was gradually lowered, and the vi-
brato was gradually strengthened in the case of pitch skeleton.
From this, we confirmed that speaker embedding not only re-
flects the identity of different singers but also contains appro-
priate information about their changes.

4.4. Listening test

We conducted a listening test with a total of 6 different male
and female singer’s voices for qualitative evaluation. We gen-
erated two vocal voices for each person for the randomly se-
lected song. To show that the proposed network does not have
any degradation in performance even when it independently
controls singing style and timbre, we also created two sam-
ples for each person’s formant mask with another person’s
pitch skeleton and used them for evaluation. 26 participants
were asked to evaluate pronunciation accuracy, sound qual-
ity, and the naturalness of test samples. The result is shown in
Table 1.

Table 1. Listening test result (9-point scale)
Model Pronun.acc Sound.quality Naturalness

proposed (w/o cross) 7.30± 1.44 5.06± 1.44 5.64± 2.01
proposed (w/ cross) 7.36± 1.39 5.19± 1.76 5.55± 2.02

Ground 7.43± 1.50 6.40± 1.96 6.89± 1.89

A paired t-test [16] shows no difference for all items, re-
gardless of whether the cross-generation was carried out. We
also confirmed that there is no significant difference with the
ground truth samples for the pronunciation accuracy. From
this, we verify that our proposed network could combine
different timbre and singing style without any performance
degradation, and can generate a singing voice that can match
the ground truth sample with accurate pronunciation.

4.5. Timbre & style classification test

We conducted a classification test to ensure that the net-
work generates results that reflect timbre and singing styles
independently. We prepared a total of 20 test sets, 10 each
for judging timbre and singing style, and each test set con-
sisted of three sources A, B, and C. A and B are the singing
voices generated without cross-generation, and C is cross-
generated using its own timbre/style and referencing one of
A or B’s style/timbre. By comparing these samples, partici-
pants are asked to prefer instead sample C’s timbre/style is
a closer match to A or B’s. Considering gender differences,
we equally divided three singers’ gender into every possible
combination, and the result is as follows in Fig. 5.

Fig. 5. Timbre and style classification test result

According to the results of the experiment, 8% of partic-
ipants in timbre and 31% in singing style chose incorrect an-
swers. The answer rate of the singing style was lower than the
timbre, which is analyzed because the data we used in train-
ing consisted of amateur vocals whose style was relatively
unclear. Nevertheless, more than half of the participants re-
sponded to the correct answer from which we conjecture that
our network is able to generate a timbre and singing style that
matches a given singer identity query to a level that humans
can perceive.

5. CONCLUSION

In this study, we proposed a multi-singer SVS system that
can independently model and control the singer’s timbre
and singing style. We disentangled the identity of the singer
through a method of conforming singer identity embedding
independently in two decoders. The listening test showed that
our system could produce high quality and accurate singing
comparable to the ground truth singing voice. Through listen-
ing tests, which classify the timbre and singing styles of the
generated samples, we revealed that we could control both
elements independently.
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