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ABSTRACT

In this paper, we analyzed how audio-visual speech enhance-

ment can help to perform the ASR task in a cocktail party

scenario. Therefore we considered two simple end-to-end

LSTM-based models that perform single-channel audio-

visual speech enhancement and phone recognition respec-

tively. Then, we studied how the two models interact, and

how to train them jointly affects the final result.

We analyzed different training strategies that reveal some

interesting and unexpected behaviors. The experiments show

that during optimization of the ASR task the speech enhance-

ment capability of the model significantly decreases and vice-

versa. Nevertheless the joint optimization of the two tasks

shows a remarkable drop of the Phone Error Rate (PER) com-

pared to the audio-visual baseline models trained only to per-

form phone recognition. We analyzed the behaviors of the

proposed models by using two limited-size datasets, and in

particular we used the mixed-speech versions of GRID and

TCD-TIMIT.

Index Terms— speech recognition, speech enhancement,

cocktail party, multi-task learning, audio-visual.

1. INTRODUCTION

Although state-of-the-art speech recognition systems have

reached very high accuracy, their performance drops signifi-

cantly when the signal is recorded in challenging conditions

(e.g. mismatched noises, low SNR, reverberation, multiple

voices). On the other hand, humans show a remarkable ability

in recognizing speech in such conditions (cocktail party effect

[1]).

Some robust ASR systems process the audio signal

through a speech enhancement or separation stage before

passing it to the recognizer [2]. An alternative approach is

to train the ASR model in a multi-task fashion where speech

enhancement/separation and recognition modules are con-

catenated and jointly trained [3, 4, 5].

Several recent works showed significant advancements in

speech separation [6, 7, 8, 9] and target speaker extraction

[10, 11] from mixed-speech mixtures.

These works proposed end-to-end models and training

strategies that are exploited to perform multi-speaker [12, 13]

and target speaker speech recognition [14].

The aim of the paper is to study how the speech enhance-

ment task can help in recognizing the phonetic transcription

of the utterance spoken by target speaker from single-channel

audio of several people talking simultaneously. Note that

this is an ill-posed problem in that many different hypotheses

about what the target speaker says are consistent with the mix-

ture signal. We addressed this problem by exploiting the vi-

sual information associated to the speaker of interest in order

to extract her speech from input mixed-speech signal. In [15]

we demonstrated that face landmark’s movements are very ef-

fective visual features for the enhancement task when the size

of the training dataset is limited.

In the last few years many audio-visual approaches have

shown remarkable results by using neural networks to solve

speech-related tasks with different modalities of the speech

signal. These include audio-visual speech recognition [16,

17], audio-visual speech enhancement [18, 19, 20] and audio-

visual speech separation [21, 22, 23].

It is well know that simultaneously learning multiple re-

lated tasks from data can be more advantageous rather than

learning these tasks independently [24]. The class of these

methods belong to Multi-Task Learning (MTL) [25].

Several speech processing applications are tightly related,

so MTL methods can improve performance and reduce gener-

alization error. In particular, robust ASR models show better

accuracy when they are trained with other tasks [3, 5, 26].

An MTL LSTM-based model is proposed in [5], where

the cost function is the weighted sum of ASR and speech

enhancement losses. Some of these methods differ from the

most common MTL approaches, where the differentiation of

tasks is made only in the last layers of the network. These

methods are also referred to as “joint learning”.

We study how the speech enhancement and recognition

tasks interact using an approach that belongs to this class of

methods. The approach is equivalent to merging two differ-

ent models with different loss functions: one to optimize the

speech enhancement, and one for the phone recognition task.
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Our aim is to analyze the interaction between the ASR and

enhancement tasks, and understand whether (and how) it is

advantageous to train them jointly. For this reason, we firstly

train and analyze a simple ASR model, then we study whether

adding a preliminary speech enhancement stage helps in per-

forming the ASR task. In order to analyze how the two tasks

(and the respective loss functions) interact we propose three

different training techniques that allow to unveil the strengths

and the weaknesses of this approach. In particular we fo-

cused our attention on a very common audio-visual setting

where the quantity of available data for training the model is

limited.

2. MODELS ARCHITECTURE

In this section we present the models used to analyze and

study how speech enhancement and recognition tasks can be

combined to perform phone recognition in a cocktail party

scenario. In order to perform a fair analysis, we use very sim-

ple and common architectures based on deep Bi-directional

Long Short-Term Memory (BLSTM) [27]. These models are

fed with the sequence s = [s1, . . . , sT ] where si ∈ R
N , ∀i ∈

[1, . . . , T ] and/or the sequence v = [v1, . . . , vT ], vt ∈ R
M . s

represents a spectrogram of the mixed-speech audio input, T
is the number of frames of the spectrogram and v is the mo-

tion vector computed from the video face landmarks [28] of

the speaker of interest.

2.1. ASR Model

The ASR model consists of a deep-BLSTM. It first computes

the mel-scale filter bank representation derived from the spec-

trogram si:

smi = m · si, (1)

where m ∈ R
C×N is the matrix that warps the spectrogram

to the mel-filter banks representation.

We developed 3 different versions of this model that differ

by the input used to perform the ASR task. The first version

only uses acoustic features, therefore xasr
i = smi .

The second version uses both audio and visual features,

thus: xasr
i =

[

smi
vi

]

, xasr
i ∈ R

C+M .

The last version of the ASR models only fed with motions

vector computed from face landmarks: xasr
i = vi.

All the models map xasr
i to the phone label l̂i by us-

ing Zasr BLSTM layers. The output of the last BLSTM

layer is linearly projected onto R
P in order to use the

CTC loss. This ASR model can be defined as follows:

Fasr(xasr
i , θasr) = l̂j . Where θasr is the set of parame-

ters of the ASR model. The model uses a CTC loss func-

tion to optimize the phone recognition task: Lasr(lj , l̂j) =

CTCloss(lj , l̂j).

2.2. Enhancement Model

The Enhancement model is developed with the goal of

denoising the speech of the speaker of interest given the

mixed-speech input. The model input at time step i is:

xi =

[

si
vi

]

, xi ∈ R
N+M . The speech enhancement task

target is y = [y1, . . .yT ], where yi ∈ R
N is a slice of the

spectrogram of the clean utterance spoken by the speaker of

interest. The enhancement model consists of Zenh BLSTM

layers and a final layer that projects the output onto R
N .

This last layer uses sigmoid as activation function and, in

order to obtain values in a scale comparable to the speech en-

hancement target, it multiplies the output by k ·d, where k is a

constant and d ∈ R
N is a vector that contains the standard de-

viations of each output feature. The enhancement model can

be defined as a function: σ(Fenh(xi, θ
enh)) ⊙ (k · d) = ŷi,

where σ is the sigmoidal function and θenh is the set of pa-

rameters of the model. As loss function the model uses the

Mean Squared Error (MSE): Lenh(yi, ŷi) = MSE(yi, ŷi).

2.3. Joint Model

In order to evaluate whether and how speech enhancement

can help in performing ASR in cocktail party scenario, we

developed a model that is the combination of the Enhance-

ment model and the ASR model: Fasr(m · ŷi, θ
asr) = l̂j .

Note that only the enhancement part of the model exploits the

visual information, while the ASR part receives in input only

the output of the audio enhancement module ŷi.

2.4. Training Strategies

Our aim is to explore and study the behaviors of the two losses

Lenh and Lasr . Therefore, we explored different techniques

to perform training in order to analyze how the two losses

interact.

The first training technique, henceforth referred to as joint

loss, consists of using a loss that is a weighted sum of the two

loss functions, Ljoin = λ · Lenh + Lasr ,

where λ ∈ R is the coefficient that multiplies Lenh.

During training we observed that the ratio of the two

losses significantly changes. To keep both the two losses at

the same level of magnitude we also experimented with an

adaptive coefficient

λadapt = 10⌊log10(L
asr)⌋/10⌊log10(L

enh)⌋. (2)

The second training method, alternated training, consists

of alternation of the speech enhancement and ASR training

phases. This training procedure performs a few steps of each

phase several times. The speech enhancement phase will use

Lenh as loss function and therefore only θenh parameters will

be updated during this phase. During the ASR phase the loss

function will be Lasr. A particular case of the alternated

training is the alternated two full phases training where the

two phases are performed only one time each for a large num-

ber of epochs.



In alternated training and alternated two full phases

training, the Lasr optimization phase updates both θenh and

θasr parameters. For both techniques we also developed a

weight freezing version that optimize Lasr by only updating

θasr.

3. EXPERIMENTAL SETUP

In this section, we report and discuss all the results obtained

during the analysis.

3.1. Dataset

We decided to focus our analysis on a challenging and com-

mon scenario where the quantity of available data and re-

sources is limited. Indeed, we performed the analysis by us-

ing the GRID [29] and TCD-TIMIT [30] audio-visual limited-

size datasets. We used the mixed-speech speaker-independent

versions of these two datasets proposed in [15] as a starting

point and then added the phone transcriptions for the speaker

of interest. The GRID and TCD-TIMIT dataset were respec-

tively split into disjoint sets of 25/4/4 and 51/4/4 speakers for

training/validation/testing respectively.

For both datasets we used standard TIMIT phone dictio-

nary. In particular in GRID the number of used phones is lim-

ited to 33 (as the vocabulary is limited to few tens of words),

while in TCD-TIMIT all the 61 TIMIT phones are present.

Similarly to what is usually done with TIMIT, the 61 phones

were mapped to 39 phones after decoding, when computing

the Phone Error Rate (PER).

3.2. Baseline and Model Setup

In order to create a strong baseline to evaluate the perfor-

mance of the joint model, we tested the various versions of the

ASR model. All these baseline models consist of 2 layers of

250 hidden units and were trained by using back-propagation

through time (BPTT) with Adam optimizer. For what con-

cerns the joint model, we used the same number of layers for

both ASR and enhancement components: Zenh = Zasr = 2.

Each layer consists of 250 hidden units with tanh activa-

tion function. We performed a limited random search-based

hyper-parameter tuning, therefore all reported results may be

slightly improved.

3.3. Phone Error Rate Evaluation

Table 1 reports PER of all baseline models and of the joint

models with different training strategies. Note that the results

on GRID obtained by using visual input can not be compared

with the results obtained in [31] since our model was trained

with a significantly smaller version of the dataset.

It is also important to point out that in the ASR-Model fed

with Mixed-Audio/Video input the visual information does

not help to reach better results, while in [15] we show that

GRID TCD-TIMIT

Training Method PER PER-61 PER-39

ASR-Mod. Clean-Audio 5.8 46.7 40.6
ASR-Mod. Mixed-Audio 49.4 78.4 71.3
ASR-Mod. Mixed-A/V 49.9 77.2 70.9
ASR-Mod. Visual 29.4 78.6 74.7

Joint-Mod. Joint loss 15.4 53.1 47.7
Joint-Mod. Alt. 2 full 16.0 45.6 41.2
Joint-Mod. Alt. 2 full freeze 18.7 44.3 40.0
Joint-Mod. Alt. 13.9 44.9 40.6
Joint-Mod. Alt. freeze 18.1 61.3 55.5
Joint-Mod. PIT Alt. 43.3 67.1 62.4

Table 1. Results on GRID and TCD-TIMIT, the first part

of the table contains the results by the ASR baseline models,

while in the second part, the results obtained by the joint mod-

els trained with the various training strategies are reported.

All the results are computed on the test set.

the visual information is very effective in performing speech

enhancement.

The joint model achieved on TCD-TIMIT a PER that is

comparable with the clean-audio baseline, while results on

GRID are slightly worse but still much better than baseline

results. Note that the difference in the achieved PER between

the two datasets is mainly due to the difference of vocabulary

size (GRID has a tiny 52 word vocabulary), phonotactics (as

in GRID the word sequences are more constrained) and utter-

ance lengths, indeed, the length of the sequences is variable

in TCD-TIMIT, while it is fixed in GRID.

In both datasets, the joint model significantly outperforms

baselines with mixed-speech input. In particular, the alter-

nated training reaches better results in GRID while in TCD-

TIMIT it is slightly outperformed by the alternated two full

phases training with weight freezing. We evaluated the joint

model also by substituting the loss Lenh by an MSE-based

loss function trained by removing visual input information

and by using permutation invariant training (PIT) optimiza-

tion [8], a very effective audio-only technique. We reported

the results in the last row of the Table 1 and in Figure 3 that

show PIT performs worse than audio-visual counterparts.

3.4. Result Analysis

In this section, we analyze the trends of Lenh and Lasr during

training, and in particular, we focus on their ratio. Due to

space limitations, we only report, the loss curves computed

on the GRID validation set, Figures 1, 2 and 3. However, we

observed an analogous behavior on TCD-TIMIT.

The first method that we analyze is the alternated two full

phases training. It first updates θenh parameters to minimize

the Lenh loss, until it reaches a plateau in terms of speech

enhancement on the validation set.

Figure 1 shows that the alternated two full phases strategy

from epoch 90, when the minimization of Lasr starts (and in-
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Fig. 1. Trend of the two losses on the GRID validation set

during training with and without freezing weights by using

the alternated two full phases training and alternate training.
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Fig. 2. Trend of the two losses on the GRID validation set

during training by using the joint loss with different λ values.

volves both θenh and θasr) the speech enhancement loss func-

tion Lenh remarkably diverges in few epochs. This behavior

suggests that the de-noised representation is not optimal to

perform the phone recognition task, as observed in previous

works [3, 4, 5], although we did not expect to observe such

a strong divergence. The Lenh and Lasr curves obtained by

using alternated two full phases training with weight freez-

ing unveil another effect of this issue. Here θenh parameters

are forced to not change during the ASR training phase, and

hence Lenh does not diverge but at the same time Lasr does

not reach results as good as in the previous case. Figure 1

shows a similar behaviour of alternate training when weight

freezing is applied.

The dramatic drop of the enhancement performance drove

us to explore how the two losses evolve if they are trained to-

gether by using a joint loss method. Figure 2 shows the trends

of Lenh and Lasr when using different fixed values of λ and

the adaptive λadapt of equation 2. In this case while Lenh

decreases, Lasr (after a certain point) tends to increase. For

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

Lo
ss

Epoch

GRID Alternated Training 10 epochs per phase

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

Lo
ss

Epoch

GRID Alternated Training 20 epochs per phase

 1

 10

 100

 1000

 10000

 10  20  30  40  50  60  70  80  90  100

Lo
ss

Epoch

GRID Alternated Training 30 epochs per phase

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10  20  30  40  50  60  70  80  90  100

Lo
ss

Epoch

GRID Alternated Training Pit training

Fig. 3. Trend of the two losses on the GRID validation set

during training with alternated training, by using different

number of epochs per phase.

higher values of λ the gap between the two loss functions

increases, indeed Lasr tends to diverge rapidly during train-

ing. The best result for Lasr is obtained using the adaptive

λadapt value (also for TCD-TIMIT). The enhancement capa-

bility continually grows as the epochs pass, while PER op-

timization has a substantial slowdown after 40 epochs. This

deceleration coincides with the start of the faster decrease of

the enhancement loss. The joint loss training shows the in-

teresting property of obtaining fair good results for both the

metrics, but, in terms of ASR capability (that is the main goal

of the model) the results turn out to be lower than the ones

obtained with the some other training methods.

Figure 3 shows the trends of the two losses during alter-

nated training, with different number of epochs per phase.

Even in this case the decrease of Lasr coincides with a large

increase of the value of Lenh and vice-versa. Moreover, every

repetition of the two phases leads to a smaller gap between the

two loss functions.

4. CONCLUSION

In this paper we studied how audio-visual single channel

speech enhancement can help speech recognition when sev-

eral people are talking simultaneously. The analysis unveils

that jointly minimizing the speech enhancement loss and the

CTC loss may not the best strategy to improve ASR. Then

we explored the trends of the loss functions when the training

strategy consists of an alternation of the speech enhancement

and ASR training phases.We observed that the loss function

that was not considered for the training phase tends to di-

verge. Finally, we found that the interaction between the

two loss functions can be exploited in order to obtain better

results. In particular, the alternated training method shows

that PER can be gradually reduced by wisely alternating the

two training phases.
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