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ABSTRACT

Approximate Bayesian Computation (ABC) is a popular method
for approximate inference in generative models with intractable but
easy-to-sample likelihood. It constructs an approximate posterior dis-
tribution by finding parameters for which the simulated data are close
to the observations in terms of summary statistics. These statistics are
defined beforehand and might induce a loss of information, which has
been shown to deteriorate the quality of the approximation. To over-
come this problem, Wasserstein-ABC has been recently proposed,
and compares the datasets via the Wasserstein distance between their
empirical distributions, but does not scale well to the dimension or
the number of samples. We propose a new ABC technique, called
Sliced-Wasserstein ABC and based on the Sliced-Wasserstein dis-
tance, which has better computational and statistical properties. We
derive two theoretical results showing the asymptotical consistency
of our approach, and we illustrate its advantages on synthetic data
and an image denoising task.

Index Terms— Likelihood-free inference, Approximate Bayesian
Computation, Optimal transport, Sliced-Wasserstein distance

1. INTRODUCTION

Consider the problem of estimating the posterior distribution of some
model parameters θ ∈ Rdθ given n data points y1:n ∈ Yn. This dis-
tribution has a closed-form expression given by the Bayes’ theorem
up to a multiplicative constant: π(θ|y1:n) ∝ π(y1:n|θ)π(θ). For
many statistical models of interest, the likelihood π(y1:n|θ) cannot be
numerically evaluated in a reasonable amount of time, which prevents
the application of classical likelihood-based approximate inference
methods. Nevertheless, in various settings, even if the associated like-
lihood is numerically intractable, one can still generate synthetic data
given any model parameter value. This generative setting gave rise
to an alternative framework of likelihood-free inference techniques.
Among them, Approximate Bayesian Computation (ABC, [1, 2])
methods have become a popular choice and have proven useful in
various practical applications (e.g., [3, 4, 5]). The core idea of ABC is
to bypass calculation of the likelihood by using simulations: the exact
posterior is approximated by retaining the parameter values for which
the synthetic data are close enough to the observations. Closeness
is usually measured with a discrepancy measure between the two
datasets reduced to some ‘summary statistics’ (e.g., empirical mean
or empirical covariance). While summaries allow a practical and
efficient implementation of ABC, especially in high-dimensional data
spaces, the quality of the approximate posterior distribution highly
depends on them and constructing sufficient statistics is a non-trivial
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task. Summary statistics can be designed by hand using expert knowl-
edge, which can be tedious especially in real-world applications, or
in an automated way, for instance see [6].

Recently, discrepancy measures that view data sets as empirical
probability distributions to eschew the construction of summary statis-
tics have been proposed for ABC. Examples include the Kullback-
Leibler divergence (KL, [7]), maximum mean discrepancy [8], and
Wasserstein distance [9]. This latter distance emerges from the op-
timal transport (OT) theory and has attracted abundant attention in
statistics and machine learning due to its strong theoretical prop-
erties and applications on many domains. In particular, it has the
ability of making meaningful comparisons even between probabil-
ity measures with non-overlapping supports, unlike KL. However,
the computational complexity of the Wasserstein distance rapidly
becomes a challenge when the dimension of the observations is large.
Several numerical methods have been proposed during the past few
years to speed-up this computation. Wasserstein-ABC (WABC, [9])
uses an approximation based on the Hilbert space-filling curve and
termed the Hilbert distance, which is computationally efficient but
accurate for small dimensions only. Besides, under a general setting,
the Wasserstein distance suffers from a curse of dimensionality in the
sense that the error made when approximating it from samples grows
exponentially fast with the data space dimension [10]. These compu-
tational and statistical burdens can strongly affect the performance of
WABC applied to high-dimensional data.

The Sliced-Wasserstein distance (SW, [11, 12]) is an alternative
OT distance and leverages the attractive property that the Wasserstein
distance between one-dimensional measures has an analytical form
which can be efficiently approximated. SW is defined as an aver-
age of one-dimensional Wasserstein distances, and therefore has a
significantly better computational complexity. Several recent stud-
ies have reported empirical success on generative modeling with
SW [13, 14, 15] as well as nice asymptotic and statistical properties
[16, 17, 18], making this alternative distance increasingly popular.
In this paper, we develop a novel ABC framework that uses SW as
the data discrepancy measure. This defines a likelihood-free method
which does not require choosing summary statistics and is efficient
even with high-dimensional observations. We derive asymptotical
guarantees on the convergence of the resulting ABC posterior, and
we illustrate the superior empirical performance of our methodology
by applying it on a synthetical problem and an image denoising task.

2. BACKGROUND

Consider a probability space (Ω,F ,P) with associated expectation
operator E, on which all the random variables are defined. Let
(Yk)k∈N∗ be a sequence of independent and identically distributed
(i.i.d.) random variables associated with some observations (yk)k∈N∗
valued in Y ⊂ Rd. Denote by µ? the common distribution of
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Pseudo-code 1: Vanilla ABC.
Input: observations y1:n, number of iterations T , data

discrepancy measure D, summary statistics s,
tolerance threshold ε > 0.

for t = 1, . . . , T do
repeat

θ ∼ π(·) and z1:m ∼ µθ i.i.d.
until D

(
s(y1:n), s(z1:m)

)
≤ ε;

θ(t) = θ
return θ(1), . . . , θ(T )

(Yk)k∈N∗ and by P(Y) the set of probability measures on Y. For
any n ∈ N∗, µ̂n = (1/n)

∑n
i=1 δYi denotes the empirical distribu-

tion corresponding to n observations. Consider a statistical model
MΘ = {µθ ∈ P(Y) : θ ∈ Θ} parametrized by Θ ⊂ Rdθ . We
focus on parameter inference for purely generative models: for any
θ ∈ Θ, we can draw i.i.d. samples (Zk)k∈N∗ ∈ YN∗ from µθ , but the
numerical evaluation of the likelihood is not possible or too expensive.
For any m ∈ N∗, µ̂θ,m = (1/m)

∑m
i=1 δZi is the empirical distri-

bution of m i.i.d. samples generated by µθ , θ ∈ Θ. We assume that
(a) Y, endowed with the Euclidean distance ρ, is a Polish space (i.e.,
complete and separable), (b) Θ, endowed with the distance ρΘ, is a
Polish space, (c) parameters are identifiable, i.e. µθ = µθ′ implies
θ = θ′. B(Y) denotes the Borel σ-field of (Y, ρ).

Approximate Bayesian Computation. ABC methods are used to
approximate the posterior distribution in generative models when the
likelihood is numerically intractable but easy to sample from. The
basic and simplest ABC algorithm is an acceptance-rejection method
[1], which iteratively draws a candidate parameter θ′ from a prior
distribution π, and ‘synthetic data’ z1:m = (zi)

m
i=1 from µθ′ , and

keeps θ′ if z1:m is close enough to the observations y1:n = (yi)
n
i=1.

Specifically, the acceptance rule is D
(
s(y1:n), s(z1:m)

)
≤ ε, where

D is a data discrepancy measure taking non-negative values, ε is a
tolerance threshold, and s : tn∈N∗Yn → Rds with small ds is a
summary statistics. The algorithm is summarized in Pseudo-code 1
and returns samples of θ that are distributed from:

πεy1:n
(θ) =

π(θ)
∫
Ym

1{D
(
s(y1:n), s(z1:m)

)
≤ ε}dµθ(z1:m)∫

Θ
dπ(θ)

∫
Ym

1{D
(
s(y1:n), s(z1:m)

)
≤ ε}dµθ(z1:m)

(1)
The choice of s(·) directly impacts the quality of the resulting ap-
proximate posterior: if the statistics are sufficient statistics, πεy1:n

(θ)
converges to the true posterior π(θ|y1:n) as ε → 0, otherwise, the
limiting distribution is at best π(θ|s(y1:n)) [19, 20]. Wasserstein-
ABC has been proposed to avoid this loss of information.

Wasserstein distance and ABC. For p ≥ 1, consider Pp(Y) =
{µ ∈ P(Y) :

∫
Y
‖y − y0‖p dµ(y) < +∞} for some y0 ∈ Y and

the Wasserstein distance of order p defined for any µ, ν ∈ Pp(Y) by,

Wp
p(µ, ν) = inf

γ∈Γ(µ,ν)

{∫
Y×Y

‖x− y‖p dγ(x, y)

}
, (2)

where Γ(µ, ν) is the set of probability measures γ on (Y×Y,B(Y)⊗
B(Y)) verifying: ∀A ∈ B(Y), γ(A×Y) = µ(A), γ(Y×A) = ν(A).

Evaluating the Wasserstein distance between multi-dimensional
probability measures turns out to be numerically intractable in general,
and solving (2) between empirical distributions over n samples leads
to computational costs in O(n3 log(n)) [21]. Nevertheless, Wp

between one-dimensional measures µ, ν ∈ Pp(R) has a closed-form

expression [22, Theorem 3.1.2.(a)], given by:

Wp
p(µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt , (3)

where F−1
µ and F−1

ν denote the quantile functions of µ and ν re-
spectively. For empirical one-dimensional distributions, (3) can be
efficiently approximated by simply sorting the n samples drawn from
each distribution and computing the average cost between the sorted
samples. This amounts to O(n log(n)) operations at worst.

Wasserstein-ABC [9] is a variant of ABC (1) that uses Wp, p ≥ 1
between the empirical distributions of the observed and synthetic
data, in place of the discrepancy measure D between summaries.
To make this method scalable to any dataset size, [9] introduces a
new approximation of (2), the Hilbert distance, which extends the
idea behind the computation of Wp in 1D to higher dimensions, by
sorting samples according to their projection obtained via the Hilbert
space-filling curve. This alternative can be computed inO(n log(n)),
but yields accurate approximations only for low dimensions [9]. They
also use a second approximation, the swapping distance, based on an
iterative greedy swapping algorithm. However, each iteration requires
n2 operations, and there is no guarantee of convergence to Wp.

3. SLICED-WASSERSTEIN ABC

Sliced-Wasserstein distance. The analytical expression of Wp in
(3) motivates the formulation of an alternative OT distance, called
the Sliced-Wasserstein distance [11, 12]. SW is obtained by reduc-
ing multi-dimensional distributions to one-dimensional representa-
tions through linear projections, and then by averaging 1D Wasser-
stein distances between these projected distributions. More formally,
we denote by Sd−1 =

{
u ∈ Rd : ‖u‖2 = 1

}
the d-dimensional

unit sphere, and by 〈·, ·〉 the Euclidean inner-product. For any
u ∈ Sd−1, u? is the linear form associated with u such that for
any y ∈ Y, u?(y) = 〈u, y〉. For p ≥ 1, the Sliced-Wasserstein
distance of order p between µ, ν ∈ Pp(Y) is defined as,

SWp
p(µ, ν) =

∫
Sd−1

Wp
p(u?]µ, u

?
]ν)dσ(u) , (4)

where σ is the uniform distribution on Sd−1 and for any measurable
function f : Y → R and ζ ∈ P(Y), f]ζ is the push-forward measure
of ζ by f , defined as: ∀A ∈ B(R), f]ζ(A) = ζ(f−1(A)), with
f−1(A) = {y ∈ Y : f(y) ∈ A}. SWp is a distance on Pp(Y) [16]
with significantly lower computational requirements than the Wasser-
stein distance: in practice, the integration in (4) is approximated with
a finite-sample average, using a simple Monte Carlo (MC) scheme.

SW also seems to have better statistical properties than the
Wasserstein distance and its approximations. We illustrate it with
the task of estimating the scaling factor of the covariance matrix in a
multivariate Normal model, as in the supplementary material of [9].
For any σ > 0, denote by µσ the d-dimensional Gaussian distribu-
tion with zero-mean and covariance matrix σ2Id. Observations are
assumed i.i.d. from µσ? with σ2

? = 4, and we draw the same number
of i.i.d. data from µσ for 100 values of σ2 equispaced between 0.1
and 9. We then compute W2 and SW2 between the empirical distri-
butions of the samples, and the swapping and Hilbert approximations
presented in [9], for d ∈ {2, 10, 100} and 1000 observations. W2

between two Gaussian measures has an analytical formula, which
boils down in our setting to: W2

2(µσ? , µσ) = d(σ? − σ)2, and we
approximate the exact SW using a MC approximation of:

SW2
2(µσ? , µσ) = W2

2(µσ? , µσ)

∫
Sd−1

uTu dσ(u) ,
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Fig. 1: Comparison of OT distances and KL between data generated
from d-dimensional Gaussian distributions µσ vs. µσ? , σ2

? = 4, with
1000 i.i.d draws. SW is approximated with 100 random projections.

This formula is derived from (4) and the exact W2 between one-
dimensional Gaussian distributions. We also compute KL with the
estimator proposed for KL-based ABC (KL-ABC, [7]). Figure 1
shows the distances plotted against σ2 for each d. When the dimen-
sion increases, we observe that (i) as pointed out in [9], the quality
of the approximation of empirical Wasserstein returned by Hilbert
and swapping rapidly deteriorates, and (ii) SW, approximated using
densities or samples, is the only approximate metric that attains its
minimum at σ2

?. This curse of dimensionality can be a limiting factor
for the performance of WABC and KL-ABC in high dimensions.

Sliced-Wasserstein ABC. Motivated by the practical success of SW
regardless of the dimension value in the previous experiment, we
propose a variant of ABC based on SW, referred to as the Sliced-
Wasserstein ABC (SW-ABC). Our method is similar to WABC in the
sense that it compares empirical distributions, but instead of Wp, we
choose the discrepancy measure to be SWp, p ≥ 1. The usage of
SW allows the method to scale better to the data size and dimension.
The resulting posterior distribution, called the SW-ABC posterior, is
thus defined in (1) with D replaced by SWp.

4. THEORETICAL STUDY

In this section, we analyze the asymptotic behavior of the SW-ABC
posterior under two different regimes. Our first result concerns the
situation where the observations y1:n are fixed, and ε goes to zero.
We prove that the SW-ABC posterior is asymptotically consistent
in the sense that it converges to the true posterior, under specific
assumptions on the density used to generate synthetic data.

Proposition 1. Let p ≥ 1. Suppose that µθ has a density
fθ w.r.t. the Lebesgue measure such that fθ is continuous and
there exists NΘ ⊂ Θ satisfying supθ∈Θ\NΘ

fθ(y1:n) < ∞
and π(NΘ) = 0. In addition, assume that there exists ε̄ > 0
such that supθ∈Θ\NΘ

supz1:m∈Aε̄ fθ(z1:m) < ∞, where Aε̄ =

{z1:m : SWp(y1:n, z1:m) ≤ ε̄}. Then, with y1:n fixed, the SW-
ABC posterior converges to the true posterior as ε goes to 0, in
the sense that, for any measurable B ⊂ Θ, limε→0 π

ε
y1:n

(B) =
π(B|y1:n), where πεy1:n

is defined by (1).

Proof of Proposition 1. The proof consists in applying [9, Proposi-
tion 3.1], which establishes the conditions for the data discrepancy
measure to yield an ABC posterior that converges to the true posterior
in the asymptotic regime we consider. This amounts to verify that:

(i) For any y1:n and z1:m, with respective empirical distributions µ̂n
and µ̂θ,m, SWp(µ̂n, µ̂θ,m) = 0 if and only if µ̂n = µ̂θ,m.

(ii) SWp is continuous in the sense that, if (zk1:m)k∈N converges
to z1:m in the metric ρ, then, for any empirical distribution µ̂n,

limk→∞ SWp(µ̂n, µ̂
k
θ,m) = SWp(µ̂n, µ̂θ,m), where µ̂kθ,m is the

empirical measure of zk1:m.

Condition (i) follows from the fact that SWp is a distance [16,
Proposition 5.1.2]. Now, let y′ ∈ Y and ψ : Y → R be a continuous
function such that for any y ∈ Y, |ψ(y)| ≤ K

(
1 + ρ(y′,y)p

)
with K ∈ R. Since (zk1:m)k∈N converges to z1:m in the metric ρ
and ψ is continuous, we get that limk→∞

∫
ψ dµ̂kθ,m =

∫
ψ dµ̂θ,m.

This implies that µ̂kθ,m weakly converges to µ̂θ,m in Pp(Y) [23,
Definition 6.7], which, by [23, Theorem 6.8], is equivalent to
limk→∞Wp(µ̂

k
θ,m, µ̂θ,m) = 0. By applying the triangle inequality

and [16, Proposition 5.1.3], there exists C ≥ 0 such that, for any
empirical measure µ̂n,

|SWp(µ̂n, µ̂
k
θ,m)− SWp(µ̂n, µ̂θ,m)| ≤ SWp(µ̂

k
θ,m, µ̂θ,m)

≤ C1/p Wp(µ̂
k
θ,m, µ̂θ,m) .

We conclude that limk→∞ SWp(µ̂n, µ̂
k
θ,m) = SWp(µ̂n, µ̂θ,m),

making condition (ii) applicable.

Next, we study the limiting SW-ABC posterior when the value
of ε is fixed and the number of observations increases, i.e. n→∞.
We suppose the size m of the synthetic dataset grows to αn with
α > 0, such that m can be written as a function of n, m(n), satis-
fying limn→∞m(n) = ∞. We show that, under this setting and
appropriate additional conditions, the resulting approximate poste-
rior converges to the prior distribution on θ restricted to the region
{θ ∈ Θ : SWp(µθ? , µθ) ≤ ε}.

Proposition 2. Let p ≥ 1, ε > 0 and (m(n))n∈N∗ be an increasing
sequence satisfying limn→∞m(n)/n = α, for α > 0. Assume that
the statistical model MΘ is well specified, i.e. there exists θ? ∈ Θ
such that µ? = µθ? , and that almost surely the following holds:

lim
n→∞

SWp(µ̂n, µ̂θ,m(n)) = SWp(µθ? , µθ) , (5)

where µ̂n, µ̂θ,m(n) denote the empirical distributions of the observa-
tions y1:n and synthetic data z1:m(n) respectively. Then, the SW-ABC
posterior converges to the restriction of the prior π on the region
{θ ∈ Θ : SWp(µθ? , µθ) ≤ ε} as n→∞, i.e. for any θ ∈ Θ,

lim
n→∞

πεy1:n
(θ) = π(θ|SWp(µθ? , µθ) ≤ ε)

∝ π(θ)1{SWp(µθ? , µθ) ≤ ε} .

Proof of Proposition 2. The result follows from the application of [7,
Theorem 1] to SWp and the required conditions.

Remark 1. Condition (5) is a mild assumption, e.g. is fulfilled if
Y is compact and separable: in this case, for any ν ∈ Pp(Y) and
its empirical instantiation ν̂n , limn→∞Wp(ν, ν̂n) = 0 ν-almost
surely [10], then limn→∞ SWp(ν, ν̂n) = 0 ν-almost surely [16,
Proposition 5.1.3], and (5) follows by applying the triangle inequality.

5. EXPERIMENTS

Multivariate Gaussians. As a first set of experiments, we investigate
the performance of SW-ABC on a synthetical setting where the poste-
rior distribution is analytically available. We consider n = 100 obser-
vations (yi)

n
i=1 i.i.d. from a d-dimensional GaussianN (m?, σ

2
?Id),

with m? ∼ N (0, Id) and σ2
? = 4. The parameter θ is σ2 for which

the prior distribution is assigned to be an inverse gamma distribution
IG(1, 1). Therefore, the posterior distribution of σ2 given (yi)

n
i=1

and m? is IG(1+n·d/2, 1+2−1∑n
i=1 ‖yi −m?‖2). We compare
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Fig. 2: Comparison of SMC-ABC strategies in the multivariate Gaus-
sians problem. Each strategy uses 1000 particles and are run for 3
hours max. First row shows ABC and true posteriors of σ2, second
row reports W1-distance to true posterior vs. time. SW is approxi-
mated with its MC estimate over 100 random projections.

SW-ABC against ABC using the Euclidean distance between sample
variances (Euclidean-ABC), WABC with the Hilbert distance, WABC
with the swapping distance and KL-ABC. Each ABC approximation
was obtained using the sequential Monte Carlo sampler-based ABC
method [24], which is more computationally efficient than vanilla
ABC (1) and implemented in the package pyABC [25]. We provide
our code in [26]. Figure 2 reports for d ∈ {2, 10, 20}, the result-
ing ABC posteriors and W1 to the true posterior vs. time. Due to
the poor performance of the estimator of KL between two empirical
distributions proposed in [7] (see Fig. 1), KL-ABC fails at approxi-
mating well the posterior in these experiments. Hence, we excluded
those results from Fig. 2 for clarity. Euclidean-ABC provides the
most accurate approximation as expected since it relies on statistics
that are sufficient in our setting. WABC performs poorly with high-
dimensional observations, contrary to SW-ABC, which approximates
well the posterior for each dimension value and is as fast.

Image denoising. We now evaluate our approach on a real applica-
tion, namely image denoising. We consider a widely used algorithm
for this task, the Non-Local Means algorithm (NL-means, [27]), and
we present a novel variant of it derived from SW-ABC.

We formally define the denoising problem: let u ∈ RM×N ,
denote a clean gray-level image. We observe a corrupted version
of this image, v = u + w, where w is some noise in RM×N . The
goal is to restore u from v. We focus on denoising methods that
consider ‘patch-based representations’ of images, e.g. NL-means.
Specifically, let r ∈ N be a patch size and I = {1, . . . ,M} ×
{1, . . . , N} the set of pixel positions. For i ∈ I , u′(i) denotes the
pixel value at position i in image u′, and Pi is a (2r + 1) × (2r +
1) window in v centered at i: for k ∈ {−r, . . . , r}2, Pi(k) =
v(i + k), where v is extended to Z2 by periodicity. Let D ⊂ I
be a dictionary of positions, and φ : I → D such that, for i ∈ I ,
φ(i) = argminj∈D ‖Pi − Pj‖2, i.e. φ(i) is the position in D of the
most similar patch to Pi. For j ∈ D, an estimator of Pj is given by
P̂j = Eπ(i|(Pk)

k∈φ−1(j)
)π̃(l)[Pi+l], π̃ being the uniform distribution

on φ−1(j). In practice, it is approximated with a Monte Carlo scheme:

P̂j ≈ (Tn)−1
∑T

t=1

∑S

s=1
Pi(t)+l(s) , (6)

where i(t) ∼ π(i(t)|(Pk)k∈φ−1(j)), l(s) ∼ π̃(l), and i, l are mutually
independent. Finally, we construct an estimate û of u as follows:
for any i ∈ I , û(i) =

∑
k,‖k−i‖∞≤r P̂φ(k)(i − k) (2r + 1)−2.

The classical NL-means estimator corresponds to the case where
D = I (thus φ = Id) and for any i ∈ I and P ∈ R(2r+1)×(2r+1),
π(i, P ) ∝ 1W (i)e−‖P−Pi‖2/(2σ2), where W is a search window.

Table 1: Comparison of NL-means and SW-ABC on the image
denoising task in terms of average PSNR (dB). For each σ, we fine-
tuned the hyperparameters of NL-means and reported the best result.

σ = 10 σ = 20 σ = 30 σ = 50

NL-means 30.43 26.32 24.22 21.99

SW-ABC 27.09 26.26 24.86 22.56

Fig. 3: Visualization of the results. For each couple, the left one is
the noisy image (σ = 20) and the right one is the output of SW-ABC.

In our work, we assume that the likelihood π(P |i) is not available,
but we observe for j ∈ D, (Pk`)

m
`=1 (k` ∈ φ−1(j)) i.i.d. from

π(·|i). By replacing π(i|(Pk`)
m
`=1) in (6) by the SW-ABC posterior,

we obtain the proposed denoising method, called the SW-ABC NL-
means algorithm. We provide our Python implementation in [26].

We compare our approach with the classical NL-means. We
consider one of the standard image denoising datasets [28], called
CBSD68 [29] and consisting of 68 colored images of size 321× 481.
We first convert the images to gray scale, then manually corrupt each
of them with a Gaussian noise with standard deviation σ, and try to
recover the clean image. The quality of the output images is evaluated
with the Peak Signal to Noise Ratio (PSNR) measure: PSNR =
−10 log10

{
‖u− û‖22 /(2552NM)

}
. In our experiments, we use

a dictionary of 1000 patches picked uniformly at random, we set
T = S = m = 10, r = 3, W = {−10, . . . , 10}2, ε = (2r + 1)2,
and we compute SW with a MC scheme over L = 100 projections.

We report the average PSNR values for different values of the
noise level σ in Table 1. We observe that for small σ, NL-means
provides more accurate results, whereas when σ becomes larger
SW-ABC outperforms NL-means, thanks to the patch representation
and the use of SW. On the other hand, another important advantage
of SW-ABC becomes prominent in the computation time: the pro-
posed approach takes ≈ 6s on a standard laptop computer per image
whereas the classical NL-means algorithm takes ≈ 30s. Indeed, the
computational complexity of SW-ABC NL-means is upper-bounded
by |D|TSCSW, with CSW = Lm log(m) is the cost of computing
SW, whereas it is NM |W | (2r + 1)2 for the naïve implementation
of NL-means, where |A| denotes the cardinal number of the set A.
We can observe that SW-ABC has a lower computational complexity
since |D| � NM in practice. We note that the computation time of
NL-means can be improved by certain acceleration techniques, which
can be directly used to improve the speed of SW-ABC NL-means as
well. Finally, in Figure 3, we illustrate the performance of SW-ABC
on two 512× 512 images for visual inspection. The results show that
the injected noise is successfully removed by the proposed approach.

6. CONCLUSION

We proposed a novel ABC method, SW-ABC, based on the Sliced-
Wasserstein distance. We derived asymptotic guarantees for the
convergence of the SW-ABC posterior to the true posterior under
different regimes, and we evaluated our approach on a synthetical
and an image denoising problem. Our results showed that SW-ABC
provides an accurate approximation of the posterior, even with high-
dimensional data spaces and a small number of samples. Future work
includes extending SW-ABC to generalized SW distances [30].
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