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ABSTRACT

The cocktail party problem aims at isolating any source of in-
terest within a complex acoustic scene, and has long inspired audio
source separation research. Recent efforts have mainly focused on
separating speech from noise, speech from speech, musical instru-
ments from each other, or sound events from each other. However,
separating an audio mixture (e.g., movie soundtrack) into the three
broad categories of speech, music, and sound effects (understood to
include ambient noise and natural sound events) has been left largely
unexplored, despite a wide range of potential applications. This pa-
per formalizes this task as the cocktail fork problem, and presents
the Divide and Remaster (DnR) dataset to foster research on this
topic. DnR is built from three well-established audio datasets (Lib-
riSpeech, FMA, FSD50k), taking care to reproduce conditions simi-
lar to professionally produced content in terms of source overlap and
relative loudness, and made available at CD quality. We benchmark
standard source separation algorithms on DnR, and further introduce
a new multi-resolution model to better address the variety of acous-
tic characteristics of the three source types. Our best model produces
SI-SDR improvements over the mixture of 11.0 dB for music, 11.2
dB for speech, and 10.8 dB for sound effects.

Index Terms— audio source separation, speech, music, sound
effects, soundtrack

1. INTRODUCTION

Humans are able to focus on a source of interest within a complex
acoustic scene, a task referred to as the cocktail party problem [/1,2].
Research in audio source separation has been dedicated to enabling
machines to solve this task, with many studies taking a stab at vari-
ous slices of the problem, such as the separation of speech from non-
speech in speech enhancement (3| 4], speech from other speech in
speech separation [SH7], or separation of individual musical instru-
ments [[8H10] or non-speech sound events (or sound effects) [[11H14].
However, separation of sound mixtures involving speech, music, and
sound effects/events has been left largely unexplored, despite its
relevance to most produced audio content, such as podcasts, radio
broadcasts, and video soundtracks. We here intend to bite into this
smaller chunk of the cocktail party problem by proposing to separate
such soundtracks into these three broad categories. We refer to this
task as the cocktail fork problem, as illustrated in Fig.[T]

While there has been much work on labeling recordings based
on these three categories [[15H17]], the ability to separate audio sig-
nals into these streams has the potential to support a wide range of
novel applications. For example, an end-user could take over the fi-
nal mixing process by applying independent gains to the separated
speech, music, and sound effects signals to support their specific lis-
tening environment and preferences. Furthermore, this three-stream
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Fig. 1: Tllustration of the cocktail fork problem: given a soundtrack consist-
ing of an audio mixture of speech, music, and sound effects, the goal is to
separate it into the three corresponding stems.

separation could be a front-end for total transcription [18]] or audio-
visual video description [19]] where we want to not only transcribe
speech but also semantically describe in great detail the non-speech
sounds present in an auditory scene. A recent concurrent work [20]
also explores the task of speech, music, and sound effects (therein
referred to as noise) separation, but only considers the unrealistic
case of fully-overlapped mixtures of the three streams, and a low
sampling rate of 16 kHz. This sampling rate is not conducive to ap-
plications where humans may listen to the separated signals, and it
is often difficult or impractical to transition systems trained only on
fully-overlapped mixtures to real-world scenarios [21]].

To provide a realistic high-quality dataset for the cocktail fork
problem, we introduce the Divide and Remaster (DnR) dataset,
which is built upon LibriSpeech [22] for speech, Free Music Archive
(FMA) [23]] for music, and Freesound Dataset 50k (FSD50K) [24]]
for sound effects. DnR pays particular attention to the mixing pro-
cess, specifically the relative level of each of the sources and the
amount of inter-class overlap, both of which we hope will ease the
transition of models trained with DnR to real-world applications.
Furthermore, DnR includes comprehensive speech, music genre,
and sound event annotations, making it potentially useful for re-
search in speech transcription, music classification, sound event
detection, and audio segmentation in addition to source separation.

In this paper, we provide a detailed description of the DnR
dataset, and benchmark various source separation models. We find
the CrossNet unmix (XUMX) architecture [25]], originally proposed
for music source separation, also works well for DnR. We further
propose a multi-resolution extension of XUMX, to better handle
the wide variety of audio characteristics in the sound sources we
are trying to separate. We also address several important practical
questions often ignored in the source separation literature, such as
the impact of sampling rate on model performance, predicted energy
in regions where a source should be silent [26], and performance in
various overlapping conditions. While we only show here objective
evaluations based on synthetic data due to the lack of realistic data
with stems, we confirmed via informal listening tests that the trained
models perform well on real-world soundtracks from YouTube. Our
dataset and real-world examples are available onlineﬂ
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2. THE COCKTAIL FORK PROBLEM

We consider an audio soundtrack ¥ such that

3
y=> (1)
j=1

where x; is the submix containing all music signals, z2 that of all
speech signals, and x3 that of all sound effects. We use the term
sound effects (SFX) to broadly cover all sources not categorized as
speech or music, and choose it over alternatives such as sound events
or noise, as the term is especially relevant to our target application
where y is a soundtrack. We here define the cocktail fork problem as
that of recovering, from the audio soundtrack y, its music, speech,
and sound effect submixes, as opposed to extracting individual mu-
sical instruments, speakers, or sound effects.

Our goal is to train a machine learning model to obtain estimates
21, &2, and &3 of these submixes. We explore two general classes
of models for estimating Z;. The first one, exemplified by Conv-
TasNet [27], takes as input the time-domain mixture y, and outputs
time-domain estimates Z;. The second one operates on the time-
frequency (TF) domain mixture, i.e., Y = STFT(y), and estimates
a real-valued mask M ; for each source, obtaining time-domain esti-
mates via inverse STFT as #; = iSTFT(M; ® Y).

3. MULTI-RESOLUTION CROSSNET (MRX)

In our benchmark of various network architectures in Section [5.2]
we find consistently strong performance from CrossNet unmix
(XUMX) [25], which uses multiple parameter-less averaging op-
erations when simultaneously extracting multiple stems (musical
instruments in [25]). XUMX is an STFT masking-based architec-
ture, and choosing appropriate transform parameters is a key design
choice. Longer STFT windows provide better frequency resolution
at the cost of poorer time resolution, and vice versa for shorter
windows. Mixtures of signals with diverse acoustic characteristics
could thus benefit from multiple STFT resolutions in their TF encod-
ing. Previous research has proven the efficacy of multi-resolution
systems for audio-related tasks, such as in the context of speech en-
hancement [28]], music separation [29], speech recognition [30], and
sound event detection [31]]. We thus introduce a multi-resolution
extension of XUMX which addresses the typical limitations brought
by a single-resolution architecture. In [25], the authors show that
using multiple parallel branches to process the input can help in
the separation task. We here apply this reasoning further towards
multiple STFT resolutions.

Our proposed architecture takes a time-domain input mix-
ture and encodes it into / complex spectrograms Y7, with dif-
ferent STFT resolutions, where L; denotes the i-th window length
in milliseconds. Figure [2] shows an example with I = 3 and
{Li}: = {32, 64,256}. We use the same hop size (e.g., 8 ms in the
example of Fig.[2) for all resolutions, so they remain synchronized in
time, and N denotes the number of STFT frames for all resolutions.
In practice, we set the window size in samples to the nearest power
of 2, and the number of unique frequency bins is denoted as F,.
Each resolution is then passed to a fully connected block to convert
the magnitude spectrograms of dimension /N x F, into a consis-
tent dimension of 512 across the resolution branches. This allows us
to average them together prior to the bidirectional long short-term
memory (BLSTM) stacks, whose outputs are averaged once again.
While the averaging operators in XUMX were originally intended
to efficiently bridge independent architectures for multiple sources,
in our case, the input averaging allows the network to efficiently
combine inputs with multiple resolutions.
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Fig. 2: Multi-resolution CrossNet (MRX) architecture.

The average inputs and outputs of the BLSTM stacks are con-
catenated and decoded back into magnitude soft masks M. 44> one for
each of the three sources j and each of the [ original input resolu-
tions 7. The decoder consists of two stacks of fully-connected layers,
each followed by batch normalization (BN) and rectified linear units
(ReLU). For a given source j, each magnitude mask MM is multi-
plied element-wise with the original complex mixture spectrogram
Y7, for the corresponding resolution, a corresponding time-domain
signal Z;; is obtained via inverse STFT, and the estimated time-
domain signal &; is obtained by summing the time-domain signals:

I I
&5 = &= iSTFT(M;; ® Yr,). )
i=1 i=1

For the cocktail fork problem, the network has to estimate a total
of 31 masks (9 in the example of Fig.2). Since ReLU is used as the
final mask decoder nonlinearity, the network can freely learn weights
for each resolution that best reconstruct the time-domain signal.

4. DNR DATASET
4.1. Dataset Building Blocks

In selecting existing speech, music, and sound effects audio datasets
for the cocktail fork problem, we had three primary objectives: (1)
the data should be freely available under a Creative Commons li-
cense; (2) the sampling rate of the audio should be high enough to
cover the full range of human hearing (e.g., 44.1 kHz) to support lis-
tening applications (one can always downsample as needed); and (3)
the audio should contain metadata labels such that it can also be used
to explore the impact of separation on downstream tasks, such as
transcribing speech and/or providing time-stamped labels for sound
effects and music. We selected the following three datasets.

FSD5S0K - Sound effects: The Freesound Dataset 50k (FSD50K)
[24] contains 44.1 kHz mono audio, and clips are tagged using a vo-
cabulary of 200 class labels from the AudioSet ontology [32]]. For
mixing purposes, we manually classify each of the 200 class labels in
FSDS50K into one of 3 groups: foreground sounds (e.g., dog bark),
background sounds (e.g., traffic noise), and speech/musical instru-
ments (e.g., guitar, speech). Speech and musical instrument clips are
filtered out to avoid confusion with our speech and music datasets,
and we use different mixing rules for foreground and background



events as described in Section We also remove any leading or
trailing silence from each sound event prior to mixing.

Free Music Archive - Music: The Free Music Archive (FMA) [23]
is a music dataset including over 100,000 stereo songs across 161
musical genres at 44.1 kHz sampling rate. FMA was originally pro-
posed to address music information retrieval (MIR) tasks and thus
includes a wide variety of musical metadata. In the context of DnR,
we only use track genre as the music metadata. We use the medium
subset of FMA which contains 30 second clips from 25,000 songs in
16 unbalanced genres, and is of a comparable size to FSD50K.
LibriSpeech - Speech: DnR’s speech class is drawn from the Lib-
riSpeech dataset [22], an automatic speech recognition corpus based
on public-domain audio books. We use the 100 h TRAIN-CLEAN-
100 subset for training, chosen over TRAIN-CLEAN-360 because it
is closer in size to FSD50K and FMA-medium. For validation and
test, we use the clean subsets DEV-CLEAN and TEST-CLEAN to avoid
noisy speech being confused with music or sound effects. We incor-
porate the provided speech transcription for each utterance as part of
the DnR metadata. LibriSpeech provides its data as clips containing
a single speech utterance at 16 kHz. Fortunately, the original 44.1
kHz mp3 audio files containing the unsegmented audiobook record-
ings harvested from the LibriVox project are also available along
with the metadata mapping each LibriSpeech utterance to the origi-
nal LibriVox filename and corresponding time-stamp, which we use
to create a high sampling rate version of LibriSpeech.

4.2. Mixing procedure

In order to create realistic mixtures of synthetic soundtracks, we fo-
cused our effort in two main areas, class overlap and relative level
between the different sources in the mixture. Multi-channel spatial-
ization is another important aspect of the mixing process, however,
we were unable to find widely agreed upon rules for this process, and
therefore focus exclusively on the single-channel case. We also note
that trained single-channel models can be applied independently to
each channel of a multi-channel recording, and the outputs combined
with a multi-channel Wiener filter for post-processing [33]]. For the
purposes of the mixing procedure described in this section, there are
four classes: speech, music, foreground effects, and background ef-
fects, but the foreground and background sounds are combined into
a single submix in the final version of the DnR dataset.

In order to ensure that a mixture could contain multiple full
speech utterances and feature a sufficient number of onsets and off-
sets between the different classes, we decided to make each mix-
ture 60 seconds long. We do not allow within-class overlap between
clips, i.e., two music files will not overlap, but foreground and back-
ground sound effects can overlap. The number of files for each class
is sampled from a zero-truncated Poisson distribution with expected
value A. The values of A are chosen based on the average file length
of each class, e.g., music and background effects tend to be longer
(see Table[I). For speech files, we always include the entire utterance
so that the corresponding transcription remains relevant, while for
other classes, we randomly sample the amount of silence between
clips of the same class, the clip length, and the internal start time
of each clip. Using this mixing procedure, the “all sources active”
frames account for &~ 55% of the DnR test set, the “two sources”
frames for ~ 32%, and “one source” frames for ~ 10%, leaving
silent frames at ~ 3% (See Tablefor more details).

Regarding the relative amplitude levels across the three classes,
after analyzing studies such as [34] and informal mixing rules from
industries such as motion pictures, video games, and podcasting,
we found that levels remain fairly consistent across classes, where
speech is generally found at the forefront of the mix, followed by

Table 1: Parameters used in the DnR creation procedure.

Music Speech SFX-FG  SFX-BG
A 7 8 12 6
Target LUFS  —24.0 —17.0 —21.0 —29.0

foreground sound effects, then music, and finally background am-
biances. Table [T]depicts the levels used in the DnR dataset in loud-
ness units full-scale (LUFS) [35]. To add variability while keeping
a realistic consistency over an entire mixture, we first sample an av-
erage LUFS value for each class in each mixture, uniformly from
a range of £2.0 around the corresponding Target LUFS. Then each
sound file added to the mix has its individual gain further adjusted
by uniformly sampling from a range of £1.0.

We base our training, validation, and test splits off of those pro-
vided by each of the dataset building blocks. The number of test set
mixtures is determined such that we exhaust all utterances from the
LibriSpeech TEST-CLEAN set twice. We then choose the number of
training and validation set mixtures to correspond to a .7/.1/.2 split
between training/validation/test, which is roughly in line with the
split percentages for FMA (.8/.1/.1) and FSD50k (.7/.1/.2). In the
end, DnR consists of 3,406 mixtures (= 57 h) for the training set,
487 mixtures (= 8 h) for the validation set, and 973 mixtures (=~ 16
h) for the test set, along with their isolated ground-truth stems.

5. EXPERIMENTAL VALIDATION
5.1. Setup

We benchmark the performance of several source separation models
in terms of scale-invariant signal-to-distortion ratio (SI-SDR) [36]
for the cocktail fork problem on the DnR dataset, both in the origi-
nal 44.1 kHz version and in a downsampled 16 kHz version. Unless
otherwise noted, we compute the SI-SDR on each 60 second mix-
ture, and average over all tracks in the test set.

XUMX and MRX models: We consider single-resolution XUMX
baselines with various STFT resolutions. We opt to cover a wide
range of window lengths L (between 32 and 256 ms) to assess the
impact of resolution on performance. For our proposed MRX model,
we use three STFT resolutions of 32, 64, and 256 ms, which we
found to work best on the validation set. We use XUMX;. to de-
note a model with an L ms window. We set the hop size to a quar-
ter of the window size. For the MRX model, we determine hop
size based on the shortest window. To parse the contributions of the
multi-resolution and multi-decoder features of MRX, we also evalu-
ate an architecture adding MRX’s multi-decoder to the best single-
resolution model (XUMXe), referred to as XUMXes multi-dec. This
results in an architecture of the same size (i.e., same number of pa-
rameters) as our proposed MRX model. In all architectures, each
BLSTM layer has 256 hidden units and input/output dimension of
512, and the hidden layer in the decoder has dimension 512.

Other benchmarks: We also evaluate our own implementations of
Conv-TasNet [27] and a temporal convolution network (TCN) with
mask inference (MaskTCN). MaskTCN uses an identical TCN to the
one used internally by Conv-Tasnet, but the learned encoder/decoder
are replaced with STFT/iSTFT operations. For MaskTCN, we use an
STFT window/hop of 64/16 ms, and for the learned encoder/decoder
of Conv-TasNet, we use 500 filters with a window size of 32 samples
and a stride of 16 at 16 kHz, and a window size of 80 samples and a
stride of 40 at 44.1 kHz. All TCN parameters in both Conv-TasNet
and MaskTCN follow the best configuration of [27]]. Additionally,
we evaluate Open-Unmix (UMX) [9]], the predecessor to XUMX, by
training a separate model for each source, but without the parallel
branches and averaging operations introduced by XUMX. We also



Table 2: SI-SDR [dB] results of proposed models and baselines on DnR.

16 kHz 44.1 kHz
Model Music Speech SFX Music Speech SFX
No processing —6.8 1.1 —-52 —-6.8 1.0 —-5.0
Oracle PSF [37] 11.9 180 13.6 11.6 17.8 13.7
Conv-TasNet [27] 1.1 9.4 2.7 0.3 8.5 2.0
MaskTCNg4 [27]] 1.9 10.2 3.1 1.7 9.7 3.8
UMXe4 [9] 3.2 118 4.1 3.1 11.7 4.4
XUMX3; [25] 3.2 11.5 4.5 29 11.2 4.7
XUMXe4 [25] 3.6 11.8 4.7 3.5  11.7 5.1
XUMX 28 [25] 3.5 11.3 4.5 3.7 11.6 5.1
XUMXos6 [25] 2.9 10.2 3.8 2.9 10.5 4.4
XUMX 64, multi-dec 3.7 11.7 4.8 3.5 11.8 5.0
MRUjingle-stack (proposed) 3.7 12.1 4.1 3.5 11.8 4.4
MRU pyii-stack (proposed) 3.7  12.2 4.2 3.8 12.0 4.6
MRX (proposed) 4.1 12.2 5.1 4.2 12.3 5.7

explore a new multi-resolution UMX (MRU), which uses the same
settings as the MRX model in Fig. 2} but features a single BLSTM
stack and a single decoder and is trained separately for each source.
Training setup: The Conv-TasNet, XUMXy, XUMXe4 multi-decs
UMX, MRU, and MRX models all use SI-SDR [27,/36] as loss
function, while MaskTCN uses the waveform domain L, loss. All
models are trained on 9 s chunks, except MaskTCN, trained on
6 s chunks, and Conv-TasNet, trained on 4 s chunks at 16 kHz
and 2 s chunks at 44.1 kHz; we found these values to lead to best
performance under our GPU memory constraints. All models are
trained for 300 epochs using ADAM. The learning rate is initialized
to 1073, and halved if the validation loss is not improved over 3
epochs.

5.2. Results and Discussion

Model comparisons: Table[2]presents the SI-SDR of various mod-
els trained and tested on DnR, in addition to the no processing con-
dition (lower bound, using the mixture as estimate) and oracle phase
sensitive mask [37] (upper bound). For each model, SI-SDR im-
provements are fairly consistent across source types, despite the dif-
ferences in their relative levels in the mix, which can be seen in the
“No Processing” SI-SDR. For both sampling rates, we observe that
our proposed MRX model outperforms all single resolution base-
lines on all source types. This implies that the network learns to
effectively combine information from different STFT resolutions to
more accurately reconstruct the target sources. The performance
of XUMXGe4 muli-dec further confirms this hypothesis by performing
nearly identically to XUMXg4, showing that the use of multiple de-
coders alone does not improve performance. We also observe that
the single-source models (UMX, MRU) tend to perform comparably
to the cross-source models (XUMX, MRX) for speech, but perform
worse for music and SFX. We speculate that because music and SFX
are quieter in the mix, it is harder for the network to isolate them
effectively without the support of the other sources, while louder
sources (here, speech) do not benefit from joint estimation.

Sampling rate comparisons: Table[3|compares the average SI-SDR
performance of the MRX model across sampling rates. In the 44.1
kHz column, we observe a reduction in SI-SDR for all source classes
when upsampling the 16 kHz model output to 44.1 kHz (“Resam-
pled”). This is to be expected as all frequencies above 8 kHz are
zero in the upsampled 44.1 kHz signal, but we see that these fre-
quencies only contribute a small amount to the difference in SI-SDR
scores, as there is comparatively little energy there. In the 16 kHz
column, we observe a minor performance gain in the “Resampled”
row where the 44.1 kHz model output is downsampled to 16 kHz,
showing that the model can make use of information above 8§ kHz
to improve separation under 8 kHz. This result could be beneficial

Table 3: SI-SDR [dB] of the MRX model across sample rates. In Original
row, processing is done at the evaluation sample rate indicated in each col-
umn. In Resampled row, processing is done at the other sample rate (44.1
kHz for 16 kHz and vice versa) and the output resampled for evaluation.

16 kHz 44.1 kHz
Model Music  Speech  SFX Music Speech SFX

Original 4.1 12.2 5.1 4.2 12.3 5.7
Resampled 4.2 12.3 5.4 39 11.3 4.1

Table 4: Performance of MRX at 44.1 kHz for each source on the seven
overlapping use-cases. M, S, X indicate presence within a frame of music,
speech, and SFX respectively. Scores indicate SI-SDR [dB] improvement
when the source is present with another, final SI-SDR [dB] when the source
is the only one present (indicated by ), and Predicted Energy at Silence [dB]
(PES) when a source is not present (indicated by 7).

Source {M,S.X} {0,5.X} {M,0.X} {MS,0} {M0.0} {0,5.0} {0,0.X}
Frames 31910 6351 8702 3761 1330 1761 2737

Music 10.2 —13.6 2.9 9.0 10.7* —23.3" —21.6"
Speech  11.8 9.0 -22.0" 104 —28.7" 23.4* —29.0"
SEX 12.0 10.8 72 —6.87 —11.17 —13.4" 11.6*

for transcription applications where ASR or sound event detection
models are pre-trained at 16 kHz, but a front-end source separation
model can obtain better separated signals using 44.1 kHz input.

Overlap scenario comparisons: We here compute metrics over 1
s segments to evaluate performance independently in regions where
only certain source classes overlap. Metrics such as SI-SDR or SDR
[38] are undefined for signals containing silent target and/or esti-
mated sources. This limitation is usually circumvented by disregard-
ing the problematic frames in the evaluation process [9] (i.e., frames
containing one or more silent target(s) and/or estimated source(s)).
For example, in the MUSDB test set [8], it is reported that at least
45 minutes out of a total of 210 minutes of test data are system-
atically ignored for that reason [26]. Although these regions with
fewer active sources may be seen as less challenging, we believe it
is important to also evaluate performance when not all sources are
present, and here consider all types of overlap.

Table[d shows the overall results for each of the three sources in
the seven possible overlapping scenarios. For regions where a source
is not active in the ground truth, we report predicted energy at silence
(PES) [26] to quantify the energy incorrectly assigned to a silent
source. We note that speech has smaller PES values than music or
SFX in Table[d] even though it is the loudest source on average. SI-
SDR in the single-source cases are very high, especially for speech,
showing that few artifacts are introduced. Among the two-source
cases, we note that SI-SDRi is substantially lower for music and
SFX ({M,0,X}), indicating that these two sets of varied sources are
more difficult to separate from each other than from speech.

6. CONCLUSION

In this paper, we formalized the task of three-stem soundtrack sep-
aration as the cocktail fork problem, and introduced DnR, a high-
quality dataset built on top of three well-established sound collec-
tions: LibriSpeech (speech), FSD50K (SFX), and FMA (music).
We benchmarked several source separation algorithms on DnR and
showed that our proposed multi-resolution model performed best.
In the future, we plan to combine the separation models developed
in this paper with speech recognition and sound classification sys-
tems for automatic caption generation of speech and non-speech
sounds, and explore remixing strategies that minimize perceptual ar-
tifacts [39].
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