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ABSTRACT
Full characterization of the spectral behavior of generative
models based on neural networks remains an open issue. Re-
cent research has focused heavily on generative adversarial
networks and the high-frequency discrepancies between real
and generated images. The current solution to avoid this is
to either replace transposed convolutions with bilinear up-
sampling or add a spectral regularization term in the generator.
It is well known that Variational Autoencoders (VAEs) also
suffer from these issues.

In this work, we propose a simple 2D Fourier transform-
based spectral regularization loss for the VAE and show that it
can achieve results equal to, or better than, the current state-of-
the-art in frequency-aware losses for generative models. In ad-
dition, we experiment with altering the up-sampling procedure
in the generator network and investigate how it influences the
spectral performance of the model. We include experiments
on synthetic and real data sets to demonstrate our results.

1. INTRODUCTION

Generative deep neural network models such as the Generative
Adversarial Network (GAN) [1] and the Variational Autoen-
coder (VAE) [2] have in recent years gained a lot of attention
in e.g. face generation [3, 4, 5], image-to-image translation or
style-transfer [6, 7, 8] tasks. The wide applicability of gener-
ative models has fostered a large body of research that aims
to improve generative network architectures to enhance the
quality of the generated images. Most of this work has focused
on proposed variations of spatial loss terms in the objective
functions, which has led to a multitude of different GAN and
VAE architectures, see e.g. [9, 10, 11, 8, 12, 13]. Although
current methods generate very realistic-looking natural im-
ages, see e.g. [3, 4, 5], generative neural network models are
in general not able to reproduce the spectral distribution of
natural images adequately. Generated images still suffer from
blurriness and lack of sharp details. This issue is illustrated
in columns (a) and (b) of Fig. 1, where the first column, (a),
shows an original sample from the CelebA dataset [14], and
(b) is a blurry reconstruction of the same sample image from a
VAE trained with a traditional spatial objective function.

The lack of high-frequency content can be partially ex-
plained by the spectral bias of neural networks [15]; neural

(a) (b) (c)

Fig. 1: A sample from the CelebA dataset [14]. Top row:
(a): real image, (b): Vanilla VAE reconstruction and (c): re-
construction from VAE with spectral regularization. Bottom
row: FFT spectrum of the corresponding images. We note
the discrepancies at the highest frequencies of the 2D Fourier
spectrum in (b), compared to (a), and the lack of details in
the spatial representation of the image. A simple 2D FFT
regularization (c) achieves less blurriness in the spatial domain
and less discrepancies in the Fourier spectrum. Figure is best
viewed online.

networks prioritize low-frequency components of the data in
the early stages of learning. A growing body of research has
investigated these findings, see e.g. [16, 17, 18, 19], and ways
to utilize this in e.g. deep-fake detection [20, 21, 22, 23]. Oth-
ers propose different ways to resolve, work around, or reduce
the effects of a bias towards the low-frequency components
[21, 24, 22, 25, 24, 17, 26]. Another partial explanation for the
discrepancy in the frequency content of generated images is
the transposed convolution operation used in the up-sampling
components of generative models. Durall et al. [21] argue that
the transposed convolution operation is causing the models’
inability to learn the high-frequency content of the data and
propose to append spectral regularization (SR) to the spatial
objective function to mitigate the effects caused by the up-
sampling strategy. Others, see e.g. [17, 26], suggest to replace
the last up-sampling operation in the architecture.

In this work we show that a simple frequency-aware loss
that forces the generative model to focus on agreement of the
overall spectral content of the data is equally effective, and
sometimes better than the current state-of-the-art-in SR [21,
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24]. Furthermore, we consider the effects of replacing the up-
sampling operation in the last layer, similar to [17, 26]. This
allows us to evaluate the impact of the up-sampling operation
both with and without spectral regularization. Concretely, we
propose to incorporate a simple 2D Fourier transform agree-
ment loss term to the overall objective function. With this
additional spectral agreement term, we wish to align the high-
frequency components of the Fourier spectrum while penal-
izing unilateral learning of low-frequency components of the
data. A comparison of the vanilla VAE in column (b) with
the proposed loss in (c) of Fig. 1 shows that the added SR
term results in better spatial and spectral agreement with the
original data. We empirically evaluate the SR loss term on
synthetic and real datasets, and compare with two more com-
plex SR methods; the azimuthal integration loss by Durall et
al. [21] and the Watson perceptual loss from Czolbe et al. [24].
All three SR methods are compared against the baseline VAE
objective function with its binary cross-entropy (BCE) loss.

The rest of the paper is organized as follows: we review
some related work that focuses on spectral reconstruction with
generative models in Sec. 1.1. In Sec. 2 we briefly introduce
the VAE, SR with our 2D Fourier transform agreement loss,
and introduce an alternative approach to the transposed convo-
lution up-sampling operation. Results from our experiments
are presented and discussed in Sec. 3. Finally, Sec. 4 concludes
this work with a summary of our most important findings.

1.1. Related Work

Many works have illustrated the problems of generative mod-
els and spectral reconstruction. Several theories exist, but the
most notable are spectral bias [15, 16] and issues related to
the up-sampling operations in the final layers of the generator
network [21, 26]. Karras et al. [4] generate high-resolution
images by first letting their network focus on low-resolution
images and then progressively shift the training to consider
higher-resolution images. However, as pointed out by Khay-
atkhoei and Elgammal [16], application of the StyleGAN2
[4], which samples at high frequencies, might avoid the spa-
tial frequency bias without actually solving the issue: high-
frequency components, such as sharp details, are not preserved
to the same extent in data that has been sampled at very high
resolution [16]. Moreover, access to high-definition or high-
resolution images is not always possible, especially not when
working with e.g. remote sensing data or medical data. Very
deep architectures might also be unsuitable when considering
available computational power or computation time in specific
applications and projects.

There are numerous works in the last two years that either
try to explain the frequency discrepancy from a theoretical per-
spective, such as [27, 18], or acknowledge this drawback by
proposing ways to resolve or reduce the effects of the spectral
bias. Particularly important is the work by Durall et al. [21],
which illustrates how standard up-sampling methods such as

up-convolution or transposed convolution in the generator
network result in generative models that are incapable of repro-
ducing the spectral distribution of the data. While up-sampling
methods lack high frequencies, transposed convolution, on
the other hand, adds a large amount of high-frequency noise
in the up-sampling process. To overcome the issues the up-
sampling process causes, they propose to include SR in the
generator image-space-based loss. The spectral part of the loss
is a 1D representation of the Fourier power spectrum given
by azimuthal integration over the radial frequencies. In the
same year, Czolbe et al. [24] also adopted the idea of SR by
proposing a loss function based on Watson’s visual perception
model [28]. It mimics the human perception of image data
using a weighted distance in frequency space and adjusting
for contrast and luminance. From now on, we refer to SR by
azimuthal integration [21] as the AI loss, and to [24] as the
Watson-DFT loss. In [17], Chandrasegaran et al. argue that the
spectral discrepancies are not inherent to the neural network,
but an artifact from the up-sampling procedure. They show
promising results by replacing the last transposed convolution
layer with either zero-insert scaling, nearest interpolation, or
bilinear interpolation followed by traditional convolution.

2. METHODOLOGY

This section briefly introduces variational autoencoders and the
proposed frequency-aware loss function used in this work. A
section describing the commonly used up-sampling procedures
in convolutional neural networks is also included.

2.1. Variational Autoencoders

A variational autoencoder is a Bayesian generative model con-
figured in an autoencoding fashion, with an encoder mapping
the data, x, into a latent variable, z, and a decoder that maps
the latent variable back to the original data space. As usual
in a Bayesian setup, the problem of inference is to find the
posterior distribution p(z|x). Since the evidence p(x) is typi-
cally intractable, a lower bound is optimized using variational
inference [2]:

argmin
φ,θ

Eqφ(z|x) {log pθ(x|z)}−βKL (qφ(z|x)||p(z)) . (1)

For full derivations, see [29] or [30]. Both qφ(z|x) (en-
coder) and pθ(x|z) (decoder) are modeled via neural net-
works. p(z) is the prior over the latent variable z, which
is commonly assumed to be multivariate Gaussian dis-
tributed. Furthermore, identifying log pθ(x|z) as the negative
BCE loss, we can replace this with an energy-based model,
p(x|z) ∝ exp{−L(x, µx(z))} where L is any function that
leads to a proper probability density function [24]. This
formulation allows alternative reconstruction losses, such as
the Watson perceptual loss used in [24].



2.2. A 2D frequency spectral regularization loss

Czolbe et al. [24] suggest that the combination of spectral and
spatial components in the reconstruction loss helps improve
the image quality of generated samples. Motivated by this,
we propose a simple SR, the FFT loss, that combines a gen-
eral spatial VAE loss with deviation measures of the real and
imaginary components of the 2D Fourier transform. In our
frequency-aware loss function for the VAE, we replace L with:

L(x, x̂) = αLs(x, x̂) + (1− α)Lf (x, x̂), α ∈ [0, 1]. (2)

where Ls(x, x̂) is the BCE loss computed in the spatial
domain between the actual image, x, and its reconstruc-
tion, x̂. Lf (x, x̂) = 1

n

∑
(imag[F{x}]− imag[F{x̂}])2 +

1
n

∑
(real[F{x}]− real[F{x̂}])2 is the MSE in the fre-

quency domain, where F denotes the fast Fourier Transform.

2.3. Up-sampling and transposed convolution

To convert the latent vector into a higher-dimensional output
space, e.g., transforming a low-dimensional Gaussian sam-
ple to an image, the generator needs to increase the resolu-
tion in each layer. The most common strategy is to use the
transposed convolution operation, where the input is zero-
padded and convolved with the appropriate filter. See [31] for
a complete description. The alternative approach is to split
the transformation in two: up-sampling by interpolation and
convolution. The transposed convolution operation is known
to have several shortcomings, such as high-frequency discrep-
ancies and checkerboard artifacts [17, 32]. Chandrasegaran
et al. [17] propose multiple ways to perform the up-sampling
in the last layer of a generator network. Their results advise
to use up-sampling with nearest-neighbor interpolation and a
single convolutional block of kernel size 5× 5. We adopt this
setup in this work, hereafter denoted ’N.1.5’, and refer to [17]
for a comprehensive evaluation of additional versions of the
up-sampling procedure.

3. EXPERIMENTS

We evaluate our proposed 2D spectral loss, i.e. the FFT loss,
and compare its performance to the AI loss [21], the Watson-
DFT loss [24], and the baseline spatial BCE loss (Vanilla-
VAE). In the case of RGB images, these are in [21] first trans-
formed to gray-scale before the AI loss is computed. We
performed additional experiments with the AI loss by sepa-
rately computing it channel-wise on RGB images to evaluate
whether the gray-scale transformation impacts its performance.
Our experiments show that the channel-wise AI loss performs
similarly to the original AI loss, and it has been omitted in
the reported results. As both our proposed FFT loss and the
Watson-DFT loss can be applied to both gray-scale and RGB
images, there was no need to modify them for RGB images.

We employ three different datasets with increasing com-
plexity for the evaluation: a simple gray-scale version of the
Shape dataset by Jing et al. [33], the grey-scale MNIST dataset
[34], and the RGB CelebA dataset [14] of celebrity faces. The
Shape and MNIST datasets were analyzed at 32x32 resolution,
while the CelebA dataset was analyzed at 64x64 resolution.
We choose to employ the simple VAE networks from [33].
The focus of this work is to evaluate how SR, either alone or
combined with last layer up-sampling [17], can enhance image
quality. The influence of different network architectures on
the models’ ability to reproduce the high-frequency content
of the data is beyond the scope of this work and has therefore
been omitted. The interested reader could consult [3, 4, 5] for
examples of generative model architectures focused on gener-
ating high-resolution images from low-resolution images. To
evaluate the performance of the models, we use the root mean
squared error (RMSE) and azimuthal (polar coordinate) inte-
gration of the Fourier spectrum. Since the AI loss focuses on
alignment in the 1D representation of the Fourier power spec-
trum, the Vanilla-VAE on the alignment in the spatial domain,
and our FFT loss on the alignment in the 2D representation
of the Fourier spectrum, we choose to compute the RMSE in
all these three domains. RMSE metrics for the Watson-DFT
loss on the Shape dataset have been omitted from the reported
results of Sec. 3.1 and Sec. 3.2, since these models did not
work correctly. We argue that this could be an effect of the
Shape dataset being too simple for a more complex loss, but
did not investigate this further since the Shape dataset was
included only to compare how different losses generalize from
simple to more complex datasets.

3.1. Spectral regularization with transposed convolution

Firstly, we trained VAE models for each of the three differ-
ent datasets with the baseline Vanilla-VAE, and then with the
added Watson-DFT, AI or the FFT loss by employing tradi-
tional transposed convolution up-sampling. Our purpose was
to compare the three different ways to achieve SR against each
other and the baseline. Based on this, we evaluated if our con-
tribution, the FFT loss, can compete against the Watson-DFT
and the AI loss. Tab. 1 summarizes the quantitative results
from the empirical investigation, while Fig. 2a and Fig. 2b
show the average azimuthal integration of the power spectrum
for models trained with the different objective functions. The
quantitative RMSE metrics in Tab. 1 show that our proposed
FFT loss performs well in generating images that resemble
the true images. The only exception is when the RMSE is
computed in the AI-domain, where the Watson-DFT loss has a
smaller RMSE than our FFT loss for the CelebA dataset. This
is also shown in Fig. 2b.

3.2. Different last-layer up-sampling procedures

Secondly, we changed the up-sampling of the last layer of the
VAEs from the traditional transposed convolution to ’N.1.5’,
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Fig. 2: Average azimuthal integration power spectrum com-
puted for images in a test batch of either the MNIST [34]
(first column) or the CelebA dataset [14] (second column) by
applying either the Vanilla-VAE, Watson-DFT, AI or the FFT
loss. Results for models trained with the traditional transposed
convolution up-sampling operation are shown in (a) and (b).
Corresponding results with the ’N.1.5’ up-sampling [17] are
shown in (c) and (d).

as introduced in Sec. 2.3, and repeated the experiments from
Sec. 3.1. Tab. 2 summarizes the quantitative results from the
empirical investigation, while Fig. 2c and Fig. 2d show aver-
age azimuthal integration of the power spectrum for models
trained with the Vanilla-VAE, Watson-DFT, AI and FFT loss
in combination with ’N.1.5’ up-sampling in the last layer. In
all cases, results in Tab. 2 show that models trained with our
proposed FFT loss resemble the true data distribution better
than any of the other evaluated objective functions. Compar-
ing the rightmost parts of Fig. 2a and Fig. 2b to Fig. 2c and
Fig. 2d, it can be noted that the change in up-sampling to
’N.1.5’ improves the alignment of the high frequencies for
all generative models. However, it should be noted that the
change in up-sampling does not always imply lower RMSE,
compare e.g. Watson-DFT for CelebA in the AI-domain in
Tab. 1 with the corresponding value in Tab. 2. For the AI
loss and CelebA we can verify the results from [17]; chang-
ing the up-sampling to ’N.1.5’ reduces the RMSE in both the
AI-domain and the 2D Fourier transform-domain. However,
this result is not consistent for all datasets, over all tested SR
losses, nor for the baseline Vanilla-VAE. This indicates that a

Table 1: Mean ± std RMSE (lower is better, marked in bold)
computed in AI-domain, 2D Fourier Transform (FT) domain and
spatial domain, for experiments in Sec. 3.1 for Vanilla-VAE, Watson-
DFT loss, AI loss, and the FFT loss with transposed convolution
up-sampling.

Objective function Dataset AI 2D FT Spatial domain
Vanilla-VAE: Shape 1.2226 ± 0.8317 1.1791 ± 0.3184 0.0004 ± 0.0088
AI: Shape 0.8892 ± 0.4943 1.0842 ± 0.3549 0.0003 ± 0.0055
FFT: Shape 0.4447 ± 0.1671 1.0543 ± 0.3289 0.0001 ± 0.0021
Vanilla-VAE: MNIST 3.5091 ± 0.8296 1.7728 ± 0.1371 0.0081 ± 0.1331
Watson-DFT: MNIST 3.9728 ± 0.9697 1.8497 ± 0.0962 0.0094 ± 0.0282
AI: MNIST 3.5084 ± 0.9108 1.7274 ± 0.1194 0.0079 ± 0.0228
FFT: MNIST 2.8761 ± 0.5774 1.5710 ± 0.1249 0.0062 ± 0.0174
Vanilla-VAE: CelebA 9.2300± 1.8732 4.3506 ± 0.7480 0.0323± 0.0376
Watson-DFT: CelebA 6.7433 ± 2.7038 4.0370 ± 0.7803 0.0284 ± 0.0356
AI: CelebA 9.5100 ± 2.0860 4.3345 ± 0.6696 0.0316 ± 0.0372
FFT: CelebA 8.3299 ± 1.5421 3.5406 ± 0.6743 0.0237 ± 0.0303

Table 2: Mean ± std RMSE for experiments in Sec. 3.2 for Vanilla-
VAE, Watson-DFT loss, AI loss, and the FFT loss, with ’N.1.5’
up-sampling in the last layer, following [17].

Objective function Dataset AI 2D FT Spatial domain
Vanilla-VAE: Shape 1.3893 ± 0.7328 1.1983 ± 0.3240 0.0004 ± 0.0083
AI: Shape 0.8041 ± 0.4916 1.0940 ± 0.3186 0.0002 ±0.0046
FFT: Shape 0.1394 ± 0.1103 1.0325 ± 0.3248 2.6892e-05 ± 0.0005
Vanilla-VAE: MNIST 3.4711 ± 1.0887 1.8513 ± 0.1008 0.0084 ±0.0234
Watson-DFT: MNIST 3.6987 ± 1.2195 1.9171 ±0.1164 0.0100 ± 0.0278
AI: MNIST 3.1265 ±0.9568 1.8270 ± 0.0848 0.0085 ± 0.0236
FFT: MNIST 2.9276 ± 0.9551 1.7041 ± 0.0958 0.0071 ± 0.0189
Vanilla-VAE: CelebA 9.4452 ± 3.7583 4.3022 ± 0.7461 0.0315 ± 0.0370
Watson-DFT: CelebA 6.8082 ±2.5990 4.0807 ± 0.8466 0.0290± 0.0359
AI: CelebA 8.5200 ±4.0584 3.6181 ± 4.3116 0.7356 ± 0.0367
FFT: CelebA 5.8252 ± 2.5366 3.5917 ± 0.6925 0.0245 ± 0.0315

change in the up-sampling procedure is one possible way to
improve the performance of generative models, but the effect
is not consistent, and we urge more research on this topic.

4. CONCLUSION AND FUTURE WORK

In this paper, we have shown that a simple spectral regulariza-
tion term based on the 2D Fourier transform performs better
than more complex regularization methods for improving the
image quality of the VAE generative model. Moreover, our
results show that changing the up-sampling procedure in the
last layer from transposed convolution to nearest-neighbor
interpolation followed by standard convolution gives more am-
biguous results than indicated by previous research. Clearly,
more research is needed to untangle the true spectral properties
of neural generative models.
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