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ABSTRACT

Self-supervised training has shown promising gains in pretraining
models and facilitating the downstream finetuning for speech recog-
nition, like multilingual ASR. Most existing methods adopt a 2-stage
scheme where the self-supervised loss is optimized in the first pre-
training stage, and the standard supervised finetuning resumes in the
second stage. In this paper, we propose an end-to-end (E2E) Joint
Unsupervised and Supervised Training (JUST) method to combine
the supervised RNN-T loss and the self-supervised contrastive and
masked language modeling (MLM) losses. We validate its perfor-
mance on the public dataset Multilingual LibriSpeech (MLS), which
includes 8 languages and is extremely imbalanced. On MLS, we
explore (1) JUST trained from scratch, and (2) JUST finetuned from
a pretrained checkpoint. Experiments show that JUST can consis-
tently outperform other existing state-of-the-art methods, and beat
the monolingual baseline by a significant margin, demonstrating
JUST’s capability of handling low-resource languages in multilin-
gual ASR. Our average WER of all languages outperforms average
monolingual baseline by 33.3%, and the state-of-the-art 2-stage
XLSR by 32%. On low-resource languages like Polish, our WER 1is
less than half of the monolingual baseline and even beats the super-
vised transfer learning method which uses external supervision.

Index Terms— joint training, multilingual ASR, self-supervised
learning, contrastive learning

1. INTRODUCTION

Self-supervised learning is an effective method in unveiling the
useful and general latent representations from large-scale unlabeled
data. It is often adopted to pretrain a sequence-to-sequence model
and facilitate downstream tasks [} 22 |3]. In speech recognition,
recent works have shown successes of the 2-stage pretrain-finetune
schemes [4. 5 |6} 7 I8]. Pretrained models can greatly reduce the
sample complexity for downstream finetuning. For instance, fine-
tuning wav2vec 2.0 (w2v2) pretrained on 60k hours with only 1h
labeled data can outperform most fully supervised models [9].
While self-supervised learning has been successful for sequence
modeling, some concerns have also been raised. For example,
finetuning a pretrained model is prone to catastrophic forgetting
[L10, [11]. The model might forget the previously learnt knowledge
when trained with supervision, particularly when the supervised set
is large. Another concern is the pretrained checkpoint selection. The
downstream performance varies from one checkpoint to another,
and the one pretrained longer may not be the best one. These issues
are even more severe in multilingual ASR, since different languages
are often heterogeneous and the corpus is often imbalanced. In
Multilingual LibriSpeech (MLS) [12], English has up to 44k hours
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while Polish only has 100 hours. Most existing methods tackle
multilingual ASR from 2 directions. The first direction is transfer
learning from a source multilingual corpus to a target low-resource
multilingual dataset. In [13]], the work first trains the model on
Google’s 15-language VoiceSearch (VS) traffic and then uses it to
seed the transfer learning on MLS. Even though some languages
in MLS are not included in VS, the model can deliver satisfactory
WERs on those low-resource languages, demonstrating its general-
ization capability. However, such transfer learning requires massive
supervised source corpora which may not be easily accessible. An-
other direction is to learn useful representations through pretraining
and perform finetuning with supervision, similar to monolingual
ASR. [14] explores the unsupervised pretraining using cross-lingual
language modeling and [15] investigates the cross-lingual transfer
of phoneme features. XLSR [16] builds on w2v2 and pretrains the
model on 53 languages using the self-supervised losses. XLSR also
stands for the state-of-the-art (SOTA) on MLS dataset.

In this paper, we propose a novel Joint Unsupervised and Su-
pervised Training (JUST) method for multilingual ASR, to recon-
cile the unsupervised and supervised losses synergistically. JUST
includes two self-supervised losses, contrastive loss [9] and MLM
loss []], together with a supervised RNN-T loss [17]. Our model
architecture inherits from w2v-bert [7], a novel variation of w2v2.
The outputs from w2v-bert are passed to the decoder and produce
the RNN-T loss. We explore two types of learning with JUST: 1)
JUST trained from scratch, and 2) JUST finetuned from a pretrained
checkpoint. We compare these 2 settings with XLSR and other stan-
dard baselines. Experiments show that JUST can consistently out-
perform other SOTA and baselines. For instance, on 8 languages
from MLS, JUST improves over XLSR by 30% on average.

2. RELATED WORK

Early works adopted joint training to learn robust and transfer-
able representations. In NLP, [18] proposes joint training for ma-
chine translation. [19] suggests multiple pretraining objectives for
domain-adaptive applications. In speech, PASE [20] jointly solves
multiple self-supervised tasks to learn general representations. More
recent research found the joint training with both supervised and un-
supervised losses can directly optimize the ASR performance. [21]
alternatively minimizes an unsupervised masked CPC loss and a
supervised CTC loss [22]. This single-stage method is shown to
match the performance of the two-stage w2v2 on the Librispeech
100-hours dataset. Similarly, UniSpeech [23] optimizes a combina-
tion of phonetic CTC loss and contrastive loss. To further increase
the quantizer codebook usage, UniSpeech randomly replaces con-
textual representations with quantized latent codes. [24]] also designs
a similar hybrid multitask learning to train acoustic models under
low-resource settings, comprising of supervised CTC, attention
and self-supervised reconstruction losses. Similarly, [25] combines
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Fig. 1: An overview of our JUST framework. Feature encoder, con-
trastive net, MLM net and decoder are stacked sequentially. The
output of each module constitutes a loss in the objective function.
Target vectors and ids in the blue boxes are for unsupervised losses.
Supervised targets in the grey box are for RNN-T loss.

self- and semi-supervised learning methods for online ASR model.
These methods only contain one self-supervised loss in their opti-
mization and often tackle with speech recognition in the phoneme
level [23l 124]). JUST incorporates two self-supervised losses (con-
trastive and MLM losses), and replaces the CTC loss with an RNN-T
loss. RNN-T extends CTC with a prediction network to simulate
the effect of LM and has been widely adopted in prior multilingual
ASR systems [13)]. Furthermore, unlike [20} 24] where each of the
multiple tasks has its own branch, JUST computes different losses
simply using the intermediate outputs from different layers (Fig.[I).

3. METHOD

Our JUST framework is comprised of multiple modules for unsuper-
vised and supervised losses. All modules (except for the quantizer)
are stacked sequentially and each reads the output from the previous
module. We will elaborate on them, along with the losses, in the
following sections. Fig. [[|presents an overview.

3.1. Feature encoder

The feature encoder converts the original log-mel filter bank fea-
tures {x; }{‘:1 to the latent speech representations { z; }?:1 for T" time
steps. 1" is smaller than the original length L due to time reduction.
Unlike [9] where seven blocks of CNN are used, JUST only has two
CNN blocks both with filter size 3x3 and strides (2, 2), the same
as [S]. One can also view the feature encoder as a convolutional
subsampling, with 4x reduction in the feature dimensionality and se-
quence length.

3.2. Quantizer

JUST adopts a complex quantization mechanism [9]. After the ab-
straction of the original inputs through feature encoder, the latent

representations {z; } -, are passed to a quantizer (without any mask-
ing). The goal of the quantizer is to “summarize” all the latent speech
representations to a finite set (referred to as a codebook) of represen-
tative discriminative speech tokens {e; }}/:1 where V' is the size of
the codebook. The codebook in the quantizer stores all these tokens
and each latent representation from the feature encoder is mapped
to a token index corresponding to a token in the codebook, through
Gumbel softmax [26]] which enables differentiation of discrete code-
book selection. JUST uses a single codebook rather than multiple
ones [9]. All the tokens in the codebook are learnable during train-
ing. Quantizer module generates target quantized vector (token) g;
and target id (token index) y; for each z;, where ¢; € {e; };/:1,
yi € [1...V]. To encourage the use of the codebook, [9]] introduces
the entropy-based diversity loss L£4. We include it in JUST as well.

3.3. Contrastive net

The outputs of feature encoder {z; }7—; are not only used for quanti-
zation, but also fed into the contrastive net after masking. For mask-
ing, some z;’s are randomly chosen and replaced with random vec-
tors. Contrastive net reads z; of all time steps (either masked or
unmasked) and outputs contrastive context vectors {c; };—; for de-
riving contrastive self-supervised loss. Contrastive net is a stack
of Conformer blocks [27]], each with multi-headed self-attention,
depth-wise convolution and feed-forward layers. To derive the con-
trastive loss L., for anchor c;, we take ¢; as the positive sample and
K negative samples/distractors {§; } /<, uniformly sampled from g;
of other masked z;’s in the same utterance:

sim(ci, qi)

Le=—log — e —
sim(ci, qi) + 225_, sim(ci, 4;)

(O]

where sim(a, b) is the exponential of the cosine similarity between
a and b.

3.4. MLM net

We further boost the contextualized representation learning through
a masked prediction task with the quantizer. The inputs of MLM net
are {ci}iTzl from contrastive net. Similar to contrastive net, MLM
net is also a stack of Conformer blocks. We denote the outputs of
MLM net as {mi}ZT:l, which are high-level context vectors. Each
m; is used for token id prediction through a linear layer. The pre-
dicted id §; € [1..V] is compared with the target token id y; from
the quantizer, by the standard cross-entropy loss Ly,

Together with £, and L., the unsupervised loss is computed as:

a is set to 0.1 following [7].

3.5. Decoder

The decoder of JUST is a 2-layer RNN Transducer. {m;}i_, are
passed through Swish activation, batch normalization, and finally fed
into the decoder. The output vocabulary of the decoder is a unified
grapheme set pooled from all the 8 languages in MLS. RNN-T loss
is used in this work as the supervised loss, denoted by L. Our final
objective function is simply the combination of £,, and L:

L=Ls+BLu 3)

B is a trade-off weight. £ is optimized via Adam [28].



Method External data de en es fr it nl pl pt Avg Avg (w/o en)
Monolingual [12] - 7.10 6.76 6.68 6.58 11.78 13.09 21.66 20.52 11.8 12.5
+ 5-gram LM [12] - 6.49 5.88 6.07 5.58 10.54 12.02 20.39 19.49 10.8 11.5
XLSR-53 [16] Y 70 - 63 7.6 104 108 17.2 147 10.6 10.6
BO (random init.) [13]] Y 55 6.1 58 69 119 119 154 162 100 10.5
BO (15-language model init.) [13] Y 50 6.6 47 6.1 101 11.1 109 155 8.8 9.1
E3 (15-language model init.) [[13] Y 43 58 42 49 88 99 104 152 179 8.2
JUST (8 = 0) N 55 69 41 60 93 103 113 94 178 8.0
w2v2 Pretrain (L +aLq)+pure Finetune (L5) N 47 6.8 41 58 99 103 12.1 126 83 8.5
w2v-bert Pretrain (L, )+pure Finetune (L) N 43 6.6 38 50 91 99 81 146 7.7 7.8
w2v-bert Pretrain (L,,)+JUST Finetune (£) N 42 6.6 40 50 90 95 7.6 151 7.6 7.8
w2v2 Joint Training (Ls+8(Lc+aly)) N 46 67 41 57 89 99 98 93 74 7.5
JUST (£) N 46 68 39 57 91 99 91 86 72 7.3
JUST (L£)+pure Finetune (L) N 41 65 37 52 82 95 66 8.0 6.5 6.5

Table 1: WER(%) results on MLS for different methods. JUST-based methods greatly outperforms the compared baselines. XLSR-53 used
external unsupervised data for pretraining. BO and E3 used external supervised data. Our JUST did not use any external data.

Method Ext. de en e fr it nl pl pt Avg Avg (w/oen)
JUST (8 =0) N 55 69 41 60 93 103 113 94 78 8.0
JUST(8=003) N 50 74 43 63 93 103 87 91 175 7.6
JUST(#=0050 N 52 68 44 57 94 99 93 88 74 7.5
JUST(5=0.07) N 46 68 39 57 Ol 99 91 86 72 7.3
JUST (6 =0.1) N 58 68 41 58 103 100 97 86 7.6 7.8

Table 2: Weight sensitivity study on 8. When 8 = 0.07, the unsupervised loss is roughly the same as the supervised loss, which means
balancing the unsupervised and supervised losses can be critical in joint training.

4. EXPERIMENTS

4.1. Dataset

MLS dataset [12]] is used as the benchmark in our experiments. It
is derived from read audiobooks of LibriVox. There are 8 languages
(namely English (en), German (de), Dutch (nl), French (fr), Spanish
(es), Italian (it), Portuguese (pt) and Polish (pl)), with 44.5k hours
of English and 6k hours for other languages combined. Some low-
resource language like Polish only has 100 hours. Each utterance is
10-20 seconds long.

4.2. Training details

Architecture The inputs are 80-d filter bank features. Feature en-
coder has 2 convolutional layers with filter size (3,3), strides (2,2).
Two layers have 128 and 32 channels respectively. Contrastive net
consists of 8 Conformer blocks, each with hidden dimensionality
1024, 8 attention heads and convolution kernel size 5. MLM net
consists of 16 Conformer blocks with the same configuration. Our
decoder uses a 2-layer 768-d LSTM-based RNN-T with 3072 hidden
units. {c; }i— from contrastive net and {m;}7—, from MLM net are
used in computing self-supervised losses after layer normalization.
Our codebook has size V'=1024, with each token of length 1024.
Masking To mask {z;}7_,, we randomly sample 6.5% of all time
steps and replace each of the selected time steps and its subsequent
10 time steps with random normal vectors (from N'(0,0.1)). Some
spans might overlap.

Hyperparameters We train JUST with batch size 1024 on 64 TPUs.
Adam optimizer is employed with 8; = 0.9, 32 = 0.98 for training.
Our global learning rate schedule is the same as [7] but with warm-

up steps 5000 and peak learning rate 4e-4. Decoder uses a separate
schedule rather than the global one, with warm-up steps 1500 and
peak learning rate 7e-4. We set o = 0.1 following prior works [, /7]
and 8 = 0.07 via tuning with grid search.

Evaluation We show the WER for each language, as well as the
average WER with or without en included.

4.3. Compared methods

We compare JUST with several baselines. MLS paper [12] provides
competitive monolingual baselines without any LM and with a 5-
gram LM. Using LM improves the monolingual performance. XLSR
[16] pretrains a w2v2 on 53 languages from MLS, CommonVoice
and BABEL, and finetunes the model on MLS. XLSR finetuned on
the full set of MLS can outperform some low-resource monolingual
baselines like it, pt, pl, but not all (Table[T). We also include trans-
fer learning models, BO and E3, from [13], which used heavy su-
pervision from external VoiceSearch (VS) dataset containing 15 lan-
guages. Both BO and E3 are first trained on VS with supervision and
then finetuned on MLS. BO is a smaller model with 370M parame-
ters and E3 is a larger model with 1B parameters. We also include a
B0 model trained from scratch for comparison. Besides these exist-
ing baselines from literature, we further train a w2v-bert model from
scratch on MLS (JUST with 5 = 0), and a 2-stage preatrain-finetune
w2v-bert model on MLS without any external data.

4.4. Results

For JUST, we either train it from scratch on MLS, or jointly finetune
it from a pretrained checkpoint on MLS where the pretraining phase
would only optimize the unsupervised loss. Note that compared
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Fig. 2: Left: Comparison between using local attention with left/right context size 128, and using global attention. Global attention clearly
boosts the performance. Middle: For JUST finetuning, we either allow the codebook to be updated, or to remain fixed during the whole
finetuning. They deliver similar results. Right: The average WERs of JUST finetuning (8 = 0.01) from different checkpoints. The
checkpoint with smaller unsupervised loss may not lead to the best finetuning results.

to XLSR, our pretraining would incorporate more self-supervised
losses. Our JUST has 600M parameters, which is roughly the same
scale as BO, XLSR but much smaller than E3.

Average WER On the average WER of all 8 languages, all JUST-
based methods outperform previous works. In particular, JUST (with
B = 0.07) outperforms the monolingual baseline with 5-gram LM
by 33.3%, XLSR-53 by 32.0%, BO by 18.2%, E3 by 8.8%. Note that
E3 is a transfer learning method with much larger size and heavy
external supervision. JUST’s improvement over E3 validates the
effectiveness of our architecture and joint training scheme. If we
exclude English WER and compare other languages as in XLSR
[16], JUST outperforms monolingual, XLSR-53, B0, E3 by 36.5%,
31.1%, 19.8%, 11.0% respectively. Compared to JUST with § = 0,
JUST with joint training improves the average WER (w/o en) by
7.7% (8.8%). To show the necessity of MLM loss in joint training,
we further include the results of w2v2 joint training with the ob-
jective Ls+8(Lc+aLly). JUST still performs better on the average
WERs and low-resource es, pl, pt.

Low-resource languages JUST improves WERs for low-resource
languages such as pl, pt. On pl, JUST’s WER is less than half of the
monolingual WER baseline and roughly half of XLSR’s WER. On
pt, JUST’s WER is at least 40% lower than any of XLSR, BO or E3,
which is significant.

JUST finetune Two finetuning schemes are attempted. First, we
take a pretrained checkpoint trained with £,, and finetune it with
JUST objective £. Compared to w2v2 Pretrain+pure Finetune (no
MLM loss), it improves on all languages except pt. Compared to
w2v-bert Pretrain+pure Finetune (with MLM loss), it also improves
on de, en, fr, it, nl, pl. It is interesting to compare JUST and JUST
Finetune on pt, pl. Different training schemes lead to different quan-
tized tokens and cause the discrepancy. Emmpirically, JUST from
scratch can better facilitate the low-resource languages and reduce
WER of each language to below 10. For JUST finetuning, we set
B = 0.01 to de-weight the unsupervised loss instead of matching
with the supervised loss. Second, we take a checkpoint from JUST
trained from scratch, and finetune it with only supervised loss L. It
achieves the best average WER, further improving the average WER
(w/o en) of JUST by 10% (11%). On de, es, it, nl, pl, pt, this scheme
outperforms all compared methods and remains competitive on other
languages.

(3 sensitivity Table[2]also includes the sensitivity study on 3. When
B = 0.07, the unsupervised and the supervised losses are balanced,
resulting in the best performance.

Attention We compare two attention mechanisms for JUST from
scratch: a local attention mechanism with both left and right context

128, and a global attention mechanism with full context. The re-
sults are shown in Fig. 2] Global attention clearly outperforms local
attention on all languages.

Codebook Original w2v2 doesn’t update codebook in the finetun-
ing phase. JUST finetuning, however, keeps the unsupervised loss
and could further update the codebook. We compare the perfor-
mance with learnable or fixed codebook during JUST finetuning
(B8 = 0.01), and find their results are close (Fig. . This implies
that fixing codebook in JUST finetuning would not degrade the per-
formance. In practice, we also find larger 5 would bias the updates
to the codebook, leading to worse results.

Pretrained checkpoints Different checkpoints can lead to different
downstream performance. The later checkpoints do not necessarily
lead to better downstream WERs. To verify this, we finetune multi-
ple pretrained checkpoints and evaluate their finetuning quality. The
rightmost subfigure from Fig. []shows the constantly descending un-
supervised loss £, while the downstream average WERs don’t fol-
low the same trend.

5. CONCLUSION

This work proposes a novel uniform multilingual ASR system for the
end-to-end speech recognition on multiple languages. Our method,
JUST, is composed of a contrastive module for learning discrete
speech representations and an MLM module that performs a masked
language modeling task. JUST jointly optimizes the unsupervised
contrastive loss and MLM loss, together with the supervised RNN-
T loss. Compared to the prevalent 2-stage pretrain-finetune models,
JUST-based methods can guide the whole training process with the
unsupervised and supervised losses jointly. JUST’s performance is
validated on a public multilingual ASR dataset, MLS, and outper-
forms the monolingual baselines, a SOTA 2-stage pretrain-finetune
model XLSR, and the latest transfer learning methods, proving the
effectiveness of joint training. On low-resource languages, our JUST
and its variants can consistently bring gains and boost performance.
In the future, we will investigate how the objective function affects
the codebook learning, and also explore the joint training with more
languages and other unsupervised losses, as well as the tradeoff be-
tween unsupervised and supervised components.
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